Influence of Wavelength of Light on Growth, Yield and Nutritional Quality of Greenhouse Vegetables

Open access

Abstract

All previous reviews of research on light-emitting diodes (LEDs) have been focused on how different light spectra generally influence plant yield and quality. There are no or almost no reviews on the effect of spectra on sugars or pigment concentration, or yield and growth etc. The role of visible light in food production, as in agriculture and horticulture, is obvious, as light drives photosynthesis, which is crucial for plant growth and development. Solid state lighting using LEDs represents a fundamentally different technology from gaseous discharge-type lamps currently in use. LEDs are important lamp types because the concentration of the light spectrum they emit can be changed to provide plants at various developmental stages with the light spectrum needed. A great deal of studies have been done on the effect of wavelengths of light on growth, yield and nutritional quality of greenhouse vegetables. However, little is known about the mechanisms by which the spectra affect sugar and pigment concentration, and yield, and growth. This article provides a list of how spectra influence the yield, growth, and nutritional quality of greenhouse-grown vegetables. Based on the given information we can conclude that blue, green, and red light are the main light colours that influence positively plant yield, growth and nutrient quality. Sometimes in specific situations, some other light colours are also beneficial, like far red light, orange light and UVA light. Future work on light colour manipulation has potential for producing lamps and greenhouse covers that better support plant yield, growth, and nutrition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anonymous. (1992). Solar and Ultraviolet Radiation. IARC Monographs Lyon France.

  • Anonymous. (2012). Which regions of the electromagnetic spectrum do plants use to drive photosynthesis? Heliospectra. Available at: www.heliospectra.com (accessed 15.06.2016)

  • Bian Z. H. Cheng R. F. Yang Q. C. Wang J. Lu C. (2016). Continuous light from red blue and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. J. Amer. Soc. Horticult. Sci.141 (2) 186–195.

  • Bliznikas Z. Žukauskas A. Samuoliene G. Viršile A. Brazaityte A. Jankauskiene J Duchovskis P. Novičkovas A. (2012). Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Horticult. 939 85–91.

  • Brazaitytė A. Duchovskis P. Urbonavičiūtė A. Samuolienė G. Jankauskienė J. Kasiulevičiūtė-Bonakėrė A. Bliznikas Z. Novičkovas A. Breivė K. Žukauskas A. (2009). The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirbyste-Agriculture96 (3) 102–118.

  • Brazaitytė A. Virsilė A. Samuolienė G. Jankauskienė J. Sakalauskienė S. Sirtautas R. Novičkovas A. Dabašinskas L. Vaštakaitė V. Miliauskienė J. Duchovskis P. (2016). Light quality: Growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Horticult.1134 277–284.

  • Brown C. S. Schuerger A. C. Sager J. C. (1995). Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Horticult. Sci.120 (5) 808–813.

  • Chang C. L. Chang K. P. (2014). The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting. Sci. Horticult. 179 78–84.

  • Chen X. L. Xue X. Z. Guo W. Z. Wang L. C. Qiao X. J. (2016). Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci. Horticult.200 111–118.

  • D’Souza C. Yuk H. G. Khoo G. H. Zhou W. (2015). Application of light-emitting diodes in food production postharvest preservation and microbiological food safety. Compreh. Revi. Food Sci. Food Safety14 (6) 719–740.

  • Goto E. Hayashi K. Furuyama S. Hikosaka S. Ishigami Y. (2016). Effect of UV light on phytochemical accumulation and expression of anthocyanin biosynthesis genes in red leaf lettuce. Acta Horticult.1134 179–186.

  • Hernández R. Eguchi T. Kubota C. (2016). Growth and morphology of vegetable seedlings under different blue and red photon flux ratios using light-emitting diodes as sole-source lighting. Acta Horticult.1134 195–200.

  • Hernández R. Kubota C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exper. Bot.121 66–74.

  • Hogewoning S. W. Trouwborst G. Maljaars H. Poorter H. van Ieperen W. Harbinson J. (2010). Blue light dose–responses of leaf photosynthesis morphology and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exper. Bot.61 (11) 3107–3117.

  • Johkan M. Shoji K. Goto F. Hashida S. N. Yoshihara T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience45 (12) 1809–1814.

  • Johkan M. Shoji K. Goto F. Hahida S. N. Yoshihara T. (2012). Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exper. Bot. 75 128–133.

  • Lee M. J. Park S. Y. Oh M. M. (2015). Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Horticult. Environ. Biotechnol.56 (2) 186–194.

  • Lee M. J. Son K. H. Oh M. M. (2016). Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Horticult. Environ. Biotechnol.57 (2) 139–147.

  • Lefsrud M. G. Kopsell D. A. Sams C. E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience43 (7) 2243–2244.

  • Li Q. Kubota C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exper. Bot. 67 (1) 59–64.

  • Li H. Tang C. Xu Z. Liu X. Han X. (2012). Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J. Agricult. Sci.4 (4) 262–273.

  • Lu N. Maruo T. Johkan M. Hohjo M. Tsukagoshi S. Ito Y. Ichimura T. Shinohara Y. (2012). Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ. Control Biol.50 (1) 63–74.

  • Ménard C. Dorais M. Hovi T. Gosselin A. (2006). Developmental and physiological responses of tomato and cucumber to additional blue light. Acta Horticult.711 291–296.

  • Mizuno T. Amaki W. Watanabe H. (2011). Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Horticult.907 179–184.

  • Morrow R. C. (2008). LED lighting in horticulture. HortScience43 1947–1950

  • Nanya K. Ishigami Y. Hikosaka S. Goto E. (2012). Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Horticult.956 261–266.

  • Naznin M. T. Lefsrud M. Gravel V. Hao X. (2016). Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Horticult.1134 223–230.

  • Novickovas A. Brazaitytė A. Duchovskis P. Jankauskienė J. Samuolienė G. Virsilė A. Sirtautas R. Bliznikas Z. Zukauskas A. (2012). Solid-state lamps (LEDs) for the short-wavelength supplementary lighting in greenhouses: Experimental results with cucumber. Acta Horticult.927 723–730.

  • Olle M. Viršile A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricult. Food Sci.22 (2) 223–234.

  • Ouzounis T. Heuvelink E. Ji Y. Schouten H. J. Visser R. G. F. Marcelis L. F. M. (2016). Blue and red LED lighting effects on plant biomass stomatal conductance and metabolite content in nine tomato genotypes. Acta Horticult. 1134 251–258.

  • Pinho P. Jokinen K. Halonen L. (2017). The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Lighting Res. Technol.49 (7) 866–881.

  • Rajapakse N. C. Young R. E. McMahon M. J. and Oi R. (1999). Plant height control by photoselective filters: Current status and future prospects. HortTechnology9 (4) pp. 618–624.

  • Ryer A. (1998). What is light? Light Measurement Handbook. International Light Inc. Newburyport USA. 942 pp.

  • Samuolienė G. Urbonavičiūtė A. Duchovskis P. Bliznikas Z. Vitta P. Žukauskas A. (2009). Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience44 (7) 1857–1860.

  • Samuolienė G. Brazaitytė A. Sirtautas R. Novičkovas A. Duchovskis P. (2011). Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. J. Food Agricult. Environ.9 (3–4) 271–274.

  • Samuolienė G. Brazaitytė A. Duchovskis P. Viršilė A. Jankauskienė J. Sirtautas R Samuolienė G. Sirtautas R. Brazaitytė A. Viršilė A. Duchovskis P. (2012a). Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J. Food Agricult. Environ.10 (10) 701–706.

  • Samuolienė G. Sirtautas R. Brazaitytė A. Duchovskis P. (2012b). LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem.134 (3) 1494–1499.

  • Samuolienė G. Brazaitytė A. Duchovskis P. Viršilė A. Jankauskienė J. Sirtautas R. Novičkovas A. Sakalauskienė S. Sakalauskaitė J. (2012c). Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Horticult.952 885–892.

  • Samuolienė G. Brazaitytė A. Sirtautas R. Novičkovas A. Duchovskis P. (2012d). The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Horticult.952 835–841.

  • Sergejeva D. Alsina I. Duma M. Dubova L. Augspole I. Erdberga I. Berzina K. (2018). Evaluation of different lighting sources on the growth and chemical composition of lettuce. Agron. Res.16 (3) 892–899.

  • Son K. H. Oh M. M. (2015). Growth photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red green and blue light-emitting diodes. Horticult. Environ. Biotechnol.56 (5) 639–653.

  • Stapleton A. E. 1992. Ultraviolet radiation and plants: Burning questions. The Plant Cell4 (11) 1353–1358.

  • Stutte G. W. Edney S. Skerritt T. (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience44 (1) 79–82.

  • Tarakanov I. Yakovleva O. Konovalova I. Paliutina G. Anisimov A. (2012). Light-emitting diodes: On the way to combinatorial lighting technologies for basic research and crop production. Acta Horticult.956 171–178.

  • Wojciechowska R. Długosz-Grochowska O. Kołton A. Żupnik M. (2015). Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Scientia Horticult.187 80–86.

  • Xin J. Liu H. Song S. Chen R. Sun G. (2015). Growth and quality of Chinese kale grown under different LEDs. Agricult. Sci. Technol.16 (1) 68–115.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2714 2714 48
PDF Downloads 381 381 46