Characterisation and In Vivo Safety of Canine Adipose-Derived Stem Cells

Open access

Abstract

The study characterises canine adipose-derived stem cells (cASCs) in comparison to human ASCs (hASCs) and tests their safety in a canine model after intravenous administration. cASCs from two dogs were cultured under hypoxic conditions in a medium supplemented with autologous serum. They were plastic adherent, spindle-shaped cells that expressed CD73, CD90, and CD44 but lacked CD45, CD14, HLA-DR, and CD34. cASCs differentiated toward adipogenic, osteogenic, and chondrogenic lineages, although adipogenic differentiation capacity was low. Blast transformation reaction demonstrated that these cells significantly suppress T-cell proliferation, and this ability is dose-dependent. Intravenous administration of a cell freezing medium, therapeutic dose of cASCs (2 × 106 live cells/kg), and five times higher dose of cASCs showed no significant side effects in two dogs. Microscopic tissue lesions were limited to only mild, non-specific changes. There were no signs of malignancy. The results of the study indicate that cASCs are similar to hASCs and are safe for therapeutic applications in a canine model. The proposed methodology for ASC preparation on a non-routine basis, which includes individually optimised cell culture conditions and offers risk-adapted treatment, could be used for future personalised off-the-shelf therapies, for example, in myocardial infarction or stroke.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abdi R. Fiorina P. Adra C. N. Atkinson M. Sayegh M. H. (2008). Immunomodulation by mesenchymal stem cells. Diabetes 57 1759–1767.

  • Anjos-Afonso F. Siapati E. K. Bonnet D. (2004). In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J. Cell Sci. 117 5655–5664.

  • Anonymous (2007). No. 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending directive 2001/83/EC and regulation (EC) no 726/2004. J. Eur. Union324 121–137.

  • Anonymous (2014). Report from the commission to the European Parliament and the Council in accordance with article 25 of regulation (EC) no 1394/2007 of the European Parliament and of the Council on advanced therapy medicinal products and amending directive 2001/83/EC and regulation (EC) no 726/2004. Available from: https://publications.europa.eu/en/publication-detail/-/publication/2dc18b82-b6c8-11e3-86f9-01aa75ed71a1 (accessed 30.01.2018).

  • Anonymous (2015). General Secretariat of the Council to Delegations; Document number 15054/15: Personalised medicine for patients: Council conclusions. 07.12.2015. Available from: http://data.consilium.europa.eu/doc/document/ST-15054-2015-INIT/en/pdf (accessed 30.01.2018).

  • Basciano L. Nemos C. Foliguet B. de Isla N. de Carvalho M. Tran N. Dalloul A. (2011). Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol. 12 12.

  • Bentzon J. F. Stenderup K. Hansen F. D. Schroder H. D. Abdallah B. M. Jensen T. G. Kassem M. (2005). Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem. Biophys. Res. Comm. 330 633–640.

  • Blythe L. L. Craig A. M. Christensen J. M. Appell L. H. Slizeski M. L. (1986). Pharmacokinetic disposition of dimethyl sulfoxide administered intravenously to horses. Amer. J. Vet. Res. 47 1739–1743.

  • Bogdanova A. Berzins U. Nikulshin S. Skrastina D. Ezerta A. Legzdina D. Kozlovska T. (2014). Characterization of human adipose-derived stem cells cultured in autologous serum after subsequent passaging and long term cryopreservation. J. Stem Cells 9 135–148.

  • Carrade D. D. Borjesson D. L. (2013). Immunomodulation by mesenchymal stem cells in veterinary species. Compar. Med. 63 207–217.

  • Corcione A. Benvenuto F. Ferretti E. Giunti D. Cappiello V. Cazzanti F. Risso M. Gualandi F. Mancardi G. L. Pistoia V. Uccelli A. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood107 367–372.

  • Cyranoski D. (2010). Korean deaths spark inquiry. Nature468 485.

  • de Bakker E. Van Ryssen B. De Schauwer C. Meyer E. (2013). Canine mesenchymal stem cells: State of the art perspectives as therapy for dogs and as a model for man. Vet. Quart.33 225–233.

  • De Jesus M. M. Santiago J. S. Trinidad C. V. See M. E. Semon K. R. Fernandez M. O. Jr. Chung F. S. (2016). Autologous adipose-derived mesenchymal stromal cells for the treatment of Psoriasis vulgaris and psoriatic arthritis: A case report. Cell Transplant.25 2063–2069.

  • Desiderio V. De Francesco F. Schiraldi C. De Rosa A. La Gatta A. Paino F. d’Aquino R. Ferraro G. A. Tirino V. Papaccio G. (2013). Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue. J. Cell. Physiol.228 1762–1773.

  • Di Nicola M. Carlo-Stella C. Magni M. Milanesi M. Longoni P. D. Matteucci P. Grisanti S. Gianni A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99 3838–3843.

  • Dominici M. Le Blanc K. Mueller I. Slaper-Cortenbach I. Marini F. Krause D. Deans R. Keating A. Prockop D. Horwitz E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8 315–-317.

  • Eggenhofer E. Benseler V. Kroemer A. Popp F. C. Geissler E. K. Schlitt H. J. Baan C. C. Dahlke M. H. Hoogduijn M. J. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers Immunol.3 297.

  • Eggenhofer E. Luk F. Dahlke M. H. Hoogduijn M. J. (2014). The life and fate of mesenchymal stem cells. Frontiers Immunol.5 148.

  • Fang B. Li N. Song Y. Li J. Zhao R. C. Ma Y. (2009). Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia. Pediatric Transplant.13 499–502.

  • Fang B. Song Y. Liao L. Zhang Y. Zhao R. C. (2007). Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant. Proc.39 3358–3362.

  • Fischer U. M. Harting M. T. Jimenez F. Monzon-Posadas W. O. Xue H. Savitz S. I. Laine G. A. Cox C. S. Jr. (2009). Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Devel.18 683–692.

  • Furlani D. Ugurlucan M. Ong L. Bieback K. Pittermann E. Westien I. Wang W. Yerebakan C. Li W. Gaebel R. Li R. K. Vollmar B. Steinhoff G. Ma N. (2009). Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc. Res.77 370–376.

  • Ghannam S. Bouffi C. Djouad F. Jorgensen C. Noel D. (2010). Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Res. Ther.1 2.

  • Hall M. N. Rosenkrantz W. S. Hong J. H. Griffin C. E. Mendelsohn C. M. (2010). Evaluation of the potential use of adipose-derived mesenchymal stromal cells in the treatment of canine atopic dermatitis: A pilot study. Vet. Ther. Res. Appl. Vet. Med.11 E1–14.

  • Han S. M. Kim H. T. Kim K. W. Jeon K. O. Seo K. W. Choi E. W. Youn H. Y. (2015). CTLA4 overexpressing adipose tissue-derived mesenchymal stem cell therapy in a dog with steroid-refractory pemphigus foliaceus. BMC Vet. Res.11 49.

  • Hoffman A. M. Dow S. W. (2016). Concise review: Stem cell trials using companion animal disease models. Stem Cells (Dayton Ohio) 34 1709–1729.

  • Honmou O. Houkin K. Matsunaga T. Niitsu Y. Ishiai S. Onodera R. Waxman S. G. Kocsis J. D. (2011). Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain134 1790–1807.

  • Hu X. Yu S. P. Fraser J. L. Lu Z. Ogle M. E. Wang J. A. Wei L. (2008). Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thor. Cardiovasc. Surg.135 799–808.

  • Hung S. C. Pochampally R. R. Hsu S. C. Sanchez C. Chen S. C. Spees J. Prockop D. J. (2007). Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PloS One2 e416.

  • Ivanovic Z. (2009). Hypoxia or in situ normoxia: The stem cell paradigm. J. Cell. Physiol.219 271–275.

  • Jung J. W. Kwon M. Choi J. C. Shin J. W. Park I. W. Choi B. W. Kim J. Y. (2013). Familial occurrence of pulmonary embolism after intravenous adipose tissue-derived stem cell therapy. Yonsei Med. J. 54 1293–1296.

  • Kang J. W. Kang K. S. Koo H. C. Park J. R. Choi E. W. Park Y. H. (2008). Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cells Devel.17 681–694.

  • Kang M. H. Park H. M. (2014). Evaluation of adverse reactions in dogs following intravenous mesenchymal stem cell transplantation. Acta Vet. Scand.56 16.

  • Karagiannis K. Proklou A. Tsitoura E. Lasithiotaki I. (2017). Impaired mRNA expression of the migration related chemokine receptor CXCR4 in mesenchymal stem cells of COPD patients. Int. J. Inflam.2017 6089425.

  • Kim M. Kim D. I. Kim E. K. Kim C. W. (2017). CXCR4 overexpression in human adipose tissue-derived stem cells improves homing and engraftment in an animal limb ischemia model. Cell Transplant. 26 191–204.

  • Kisiel A. H. McDuffee L. A. Masaoud E. Bailey T. R. Esparza Gonzalez B. P. Nino-Fong R. (2012). Isolation characterization and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow adipose tissue muscle and periosteum. Amer. J. Vet. Res.73 1305–1317.

  • Kraitchman D. L. Tatsumi M. Gilson W. D. Ishimori T. Kedziorek D. Walczak P. Segars W. P. Chen H. H. Fritzges D. Izbudak I. Young R. G. Marcelino M. Pittenger M. F. Solaiyappan M. Boston R. C. Tsui B. M. Wahl R. L. Bulte J. W. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation112 1451–1461.

  • Le Blanc K. Tammik L. Sundberg B. Haynesworth S. E. Ringden O. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol.57 11–20.

  • Lee E. Y. Xia Y. Kim W. S. Kim M. H. Kim T. H. Kim K. J. Park B. S. Sung J. H. (2009). Hypoxia-enhanced wound-healing function of adipose-derived stem cells: Increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 17 540–547.

  • Legzdina D. Romanauska A. Nikulshin S. Kozlovska T. Berzins U. (2016). Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. Int. J. Stem Cells9 124–136.

  • Leroux L. Descamps B. Tojais N. F. Seguy B. Oses P. Moreau C. Daret D. Ivanovic Z. Boiron J. M. Lamaziere J.M. Dufourcq P. Couffinhal T. Duplaa C. (2010). Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol. Ther. 18 1545–1552.

  • Li Q. Zhang A. Tao C. Li X. Jin P. (2013). The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro. Biochem. Biophys. Res. Comm.441 675–680.

  • Lim J. Y. Ra J. C. Shin I. S. Jang Y. H. An H. Y. Choi J. S. Kim W. C. Kim Y. M. (2013). Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PloS One8 e71167.

  • Liu H. Liu S. Li Y. Wang X. Xue W. Ge G. Luo X. (2012). The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-pre-conditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PloS One7 e34608.

  • Lo Sicco C. Reverberi D. Balbi C. Ulivi V. Principi E. Pascucci L. Becherini P. Bosco M. C. Varesio L. Franzin C. Pozzobon M. Cancedda R. Tasso R. (2017). Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl. Med.6 1018–1028.

  • Lysaght T. Lipworth W. Hendl T. Kerridge I. Lee T.L. Munsie M. Waldby C. Stewart C. (2017). The deadly business of an unregulated global stem cell industry. J. Med. Ethics43 (11).

  • Martinello T. Bronzini I. Maccatrozzo L. Mollo A. Sampaolesi M. Mascarello F. Decaminada M. Patruno M. (2011). Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res. Vet. Sci. 91 18–24.

  • McIntosh K. R. Frazier T. Rowan B. G. Gimble J. M. (2013). Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics. Expert Rev. Clin. Immunol.9 175–184.

  • Moll G. Le Blanc K. (2015). Engineering more efficient multipotent mesenchymal stromal (stem) cells for systemic delivery as cellular therapy. ISBT Science Series10 357–365.

  • Muzes G. Sipos F. (2016). Heterogeneity of stem cells: A brief overview. Meth. Mol. biol. (Clifton N.J.) 1516 1–12.

  • Neupane M. Chang C.C. Kiupel M. Yuzbasiyan-Gurkan V. (2008). Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng. Part A14 1007–1015.

  • O’Kell A. L. Wasserfall C. Catchpole B. Davison L. J. Hess R. S. Kushner J. A. Atkinson M. A. (2017). Comparative pathogenesis of autoimmune diabetes in humans NOD mice and canines: Has a valuable animal model of Type 1 Diabetes been overlooked? Diabetes66 1443–1452.

  • Prologo J. D. Hawkins M. Gilliland C. Chinnadurai R. Harkey P. Chadid T. Lee Z. Brewster L. (2016). Interventional stem cell therapy. Clin. Radiol.71 307–311.

  • Ra J. C. Kang S. K. Shin I. S. Park H. G. Joo S. A. Kim J. G. Kang B.-C. Lee Y. S. Nakama K. Piao M. (2011a). Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J. Translat. Med.9 181.

  • Ra J. C. Shin I. S. Kim S. H. Kang S. K. Kang B. C. Lee H. Y. Kim Y. J. Jo J. Y. Yoon E. J. Choi H. J. (2011b). Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Devel.20 1297–1308.

  • Reich C. M. Raabe O. Wenisch S. Bridger P. S. Kramer M. Arnhold S. (2012). Isolation culture and chondrogenic differentiation of canine adipose tissue-and bone marrow-derived mesenchymal stem cells—a comparative study. Vet. Res. Comm.36 139–148.

  • Rosova I. Dao M. Capoccia B. Link D. Nolta J. A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells (Dayton Ohio) 26 2173–2182.

  • Russell K. A. Chow N. H. C. Dukoff D. Gibson T. W. G. LaMarre J. Betts D. H. Koch T. G. (2016). Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS One11 e0167442.

  • Sato J. Doi T. Wako Y. Hamamura M. Kanno T. Tsuchitani M. Narama I. (2012). Histopathology of incidental findings in beagles used in toxicity studies. J. Toxicol. Pathol.25 103–134.

  • Shapiro H. M. Shapiro H. M. (2003). Practical Flow Cytometry. 4th edn. Wiley-Liss. 736 pp.

  • Sparrow R. L. Tippett E. (2005). Discrimination of live and early apoptotic mononuclear cells by the fluorescent SYTO 16 vital dye. J. Immunol. Meth.305 173–187.

  • Spees J. L. Gregory C. A. Singh H. Tucker H. A. Peister A. Lynch P. J. Hsu S. C. Smith J. Prockop D. J. (2004). Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther. 9 747–756.

  • Stepien A. Dabrowska N. L. Maciagowska M. Macoch R. P. (2016). Clinical application of autologous adipose stem cells in patients with multiple sclerosis: Preliminary results Mediators Inflamm.2016 5302120.

  • Sullivan M. O. Gordon-Evans W. J. Fredericks L. P. Kiefer K. Conzemius M. G. Griffon D. J. (2016). Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Frontiers Vet. Sci. 282.

  • Takemitsu H. Zhao D. Yamamoto I. Harada Y. Michishita M. Arai T. (2012). Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet. Res.8 150.

  • Tatsumi K. Ohashi K. Matsubara Y. Kohori A. Ohno T. Kakidachi H. Horii A. Kanegae K. Utoh R. Iwata T. Okano T. (2013). Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism. Biochem. Biophys. Res. Comm.431 203–209.

  • Tsai C. C. Chen Y. J. Yew T. L. Chen L. L. Wang J. Y. Chiu C. H. Hung S. C. (2011). Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood117 459–469.

  • Tsuji W. Rubin J. P. Marra K. G. (2014). Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells6 312–321.

  • Tyndall A. Uccelli A. (2009). Multipotent mesenchymal stromal cells for autoimmune diseases: Teaching new dogs old tricks. Bone Marrow Transplantation43 821–828.

  • Veriter S. Andre W. Aouassar N. Poirel H. A. Lafosse A. Docquier P. L. Dufrane D. (2015). Human adipose-derived mesenchymal stem cells in Cell therapy: Safety and feasibility in different “Hospital Exemption” clinical applications. PloS One10 e0139566.

  • Vieira N. M. Brandalise V. Zucconi E. Secco M. Strauss B. E. Zatz M. (2010). Isolation characterization and differentiation potential of canine adipose-derived stem cells. Cell Transplant.19 279–289.

  • Vives J. Carmona G. (2015). Guide to Cell Therapy GxP: Quality Standards in the Development of Cell-Based Medicines in Non-pharmaceutical Environments. Academic Press. 266 pp.

  • Zuk P. A. Zhu M. Ashjian P. De Ugarte D. A. Huang J. I. Mizuno H. Alfonso Z. C. Fraser J. K. Benhaim P. Hedrick M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13 4279–4295.

  • Zuk P. A. Zhu M. Mizuno H. Huang J. Futrell J. W. Katz A. J. Benhaim P. Lorenz H. P. Hedrick M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7 211–228.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 520 426 21
PDF Downloads 269 230 4