Overlaps in the Pathogenesis of Rosacea and Atherosclerosis

Abstract

Rosacea is a chronic inflammatory skin disease characterised by transient or persistent erythema, telangiectasia, papules, and pustules that predominantly involve central regions of the face. Recent studies have shown a possible clinical association between rosacea and cardiovascular diseases (CVDs). Rosacea and atherosclerosis are both known to have alterations in the innate immune system, enhanced oxidative and endoplasmic reticulum stress. The aim of this review is to delve deep into the pathogenesis of rosacea and atherosclerosis to uncover possible pathogenic overlaps between these chronic inflammatory diseases.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Akin Belli, A., Altun, I. (2017). Assessment of Framingham Risk Score and systemic coronary risk evaluation in rosacea patients, Dermatologica Sinica. Available from: https://doi.org/10.1016/j.dsi.2017.03.006 (accessed 17 May 2017).

  • Alikhan, A., Kurek, L., Feldman, S. R. (2010). The role of tetracyclines in rosacea. Amer. J. Clin. Dermatol., 11 (2), 79–87.

  • Badimon, L., Padró, T., Vilahur, G. (2012). Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care, 1 (1), 60–74.

  • Bakar, O., Demirēay, Z., Yuksel, M., Haklar, G., Sanisoglu, Y. (2007). The effect of azithromycin on reactive oxygen species in rosacea. Clin. Exp. Dermatol., 32 (2), 197–200.

  • Baz, K., Cimen, M. Y., Kokturk, A., Aslan, G., Ikizoglu, G., Demirseren, D. D., Kanik, A., Atik, U. (2004). Plasma reactive oxygen species activity and antioxidant potential levels in rosacea patients: Correlation with seropositivity to Helicobacter pylori. Int. J. Dermatol., 43 (7), 494–497.

  • Benachour, H., Zaiou, M., Samara, A., Herbeth, B., Pfister, M., Lambert, D., Siest, G., Visvikis-Siest, S. (2009). Association of human cathelicidin (hCAP-18/LL-37) gene expression with cardiovascular disease risk factors. Nutr. Metab. Cardiovasc. Dis., 19 (10), 720–728.

  • Conde, J. F., Yelverton, C. B., Balkrishnan, R., Fleischer, A. B. Jr., Feldman, S. R. (2007). Managing rosacea: A review of the use of metronidazole alone and in combination with oral antibiotics. J. Drugs Dermatol., 6 (5), 495–498.

  • De Nardo, D. (2015). Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine, 74 (2), 181–189.

  • Dombrowski, Y., Peric, M., Koglin, S., Ruzicka, T., Schauber, J. (2010). Control of cutaneous antimicrobial peptides by vitamin D3. Arch. Dermatol. Res., 302 (6), 401–408.

  • Duman, N., Ersoy Evans, S., Atakan, N. (2014). Rosacea and cardiovascular risk factors: A case control study. J. Eur. Acad. Dermatol. Venereol., 28 (9), 1165–1169.

  • Edfeldt, K., Agerberth, B., Rottenberg, M. E., Gudmundsson, G. H., Wang, X. B., Mandal, K., Xu, Q., Yan, Z. Q. (2006). Involvement of the antimicrobial peptide LL-37 in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 26 (7), 1551–1557.

  • Egeberg, A., Fowler, J. F. Jr., Gislason, G. H., Thyssen, J. P. (2016). Nationwide assessment of cause-specific mortality in patients with rosacea: A cohort study in Denmark. Amer. J. Clin. Dermatol., 17 (6), 673–679.

  • Ekiz, O., Balta, I., Sen, B. B., Dikilitaş, M. C., Ozuğuz, P., Rifaioğlu, E. N. (2013). Vitamin D status in patients with rosacea. Cutan. Ocul. Toxicol., 33 (1), 60–62.

  • El-Khalawany, M., Mahmoud, A., Mosbeh, A. S., Alsalam, F., Ghonaim, N., Abou-Bakr, A. (2012). Role of Helicobacter pylori in common rosacea subtypes: A genotypic comparative study of Egyptian patients. J. Dermatol., 39 (12), 989–995.

  • Fernandez-Lizarbe, S., Montesinos, J., Guerri, C. (2013). Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J. Neurochem, 126 (2), 261–273.

  • Förstermann, U., Xia, N., Li, H. (2017). Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res., 120 (4), 713–735.

  • Goncharov, N. V., Avdonin, P. V., Nadeev, A. D., Zharkikh, I. L., Jenkins, R. O. (2015). Reactive oxygen species in pathogenesis of atherosclerosis. Curr. Pharm. Des., 21 (9), 1134–1146.

  • Graepel, R., Fernandes, E. S., Aubdool, A. A., Andersson, D. A., Bevan, S., Brain, S. D. (2011). 4-oxo-2-nonenal (4-ONE): Evidence of transient receptor potential ankyrin 1-dependent and -independent nociceptive and vasoactive responses in vivo. J. Pharmacol. Exp. Ther., 337 (1), 117–124.

  • Griendling, K. K., FitzGerald, G. A. (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 108 (16), 1912–1916.

  • Hansson, G. K., Libby, P. (2006). The immune response in atherosclerosis:A double-edged sword. Nat. Rev. Immunol., 6, 508–519.

  • Honda, J. R., Connick, E., MaWhinney, S., Chan, E. D., Flores, S. C. (2014). Plasma LL-37 correlates with vitamin D and is reduced in human immunodeficiency virus-1 infected individuals not receiving antiretroviral therapy. J. Med. Microbiol. 63 (Pt 7), 997–1003.

  • Hua, T. C., Chung, P. I., Chen, Y. J., Wu, L. C., Chen, Y. D., Hwang, C. Y., Chu, S. Y., Chen, C. C., Lee, D. D., Chang, Y. T., Liu, H. N. (2015). Cardiovascular comorbidities in patients with rosacea: A nationwide case-control study from Taiwan. J. Amer. Acad. Dermatol., 73 (2), 249–254.

  • Ito, T. (2014). PAMPs and DAMPs as triggers for DIC. J. Intensive Care, 2 (1), 67.

  • Jaipersad, A. S., Lip, G. Y., Silverman, S., Shantsila, E. (2014). The role of monocytes in angiogenesis and atherosclerosis. J. Amer. Coll. Cardiol., 63 (1), 1–11.

  • Ji, L, Xue, R., Tang, W., Wu, W., Hu, T., Liu, X., Peng, X., Gu, J., Chen, S., Zhang, S. (2014). Toll like receptor 2 knock-out attenuates carbon tetrachloride (CCl4)-induced liver fibrosis by downregulating MAPK and NF-źB signaling pathways. FEBS Lett., 588 (12), 2095–2100.

  • Kassi, E., Adamopoulos, C., Basdra, E.K., Papavassiliou, A.G. (2013). Role of vitamin D in atherosclerosis. Circulation, 128 (23), 2517–2531.

  • Kelkka, T., Hultqvist, M., Nandakumar, K. S., Holmdahl, R. (2012). Enhancement of antibody-induced arthritis via Toll-like receptor 2 stimulation is regulated by granulocyte reactive oxygen species. Amer. J. Pathol., 181 (1), 141–150.

  • Kou, B., Zhang, J., Singer, D. R. (2009). Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NAD(P)H subunit p22phox. Microvasc. Res., 77 (2), 125–133.

  • Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C., Bae, Y. S. (2013). Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res., 99 (3), 483–493.

  • Lee, W. J., Jung, J. M., Lee, Y. J., Won, C. H., Chang, S. E., Choi, J. H., Moon, K. C., Lee, M. W. (2016). Histopathological analysis of 226 patients with rosacea according to rosacea subtype and severity. Amer. J. Dermatopathol., 38 (5), 347–352.

  • Legein, B., Temmerman, L., Biessen, E. A., Lutgens, E. (2013). Inflammation and immune system interactions in atherosclerosis. Cell Mol. Life Sci., 70 (20), 3847–3869.

  • Li, H., Horke, S., Förstermann, U. (2014). Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis, 237 (1), 208–219.

  • Liebel, F., Kaur, S., Ruvolo, E., Kollias, N., Southall, M. D. (2012). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J. Invest. Dermatol., 132 (7), 1901–1907.

  • Litman, G. W., Cannon, J. P., Dishaw, L. J. (2005). Reconstructing immune phylogeny: New perspectives. Nat. Rev. Immunol., 5 (11), 866–879.

  • Mair, N., Benetti, C., Andratsch, M., Leitner, M. G., Constantin, C. E., Camprubí-Robles, M., Quarta, S., Biasio, W., Kuner, R., Gibbins, I. L., Kress, M., Haberberger, R. V. (2011). Genetic evidence for involvement of neuronally expressed S1P1 receptor in nociceptor sensitization and inflammatory pain. PLoS One, 6 (2), e17268.

  • Melnik, B. C. (2014). Endoplasmic reticulum stress: Key promoter of rosacea pathogenesis. Exp. Dermatol., 23 (12), 868–873.

  • Melnik, B. C. (2016). Rosacea: The blessing of the Celts. An approach to pathogenesis through translational research. Acta Derm. Venereol., 96 (2), 147–156.

  • Mendis, S., Davis, S., Norrving, B. (2015). Organizational update: The World Health Organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke, 46 (5), e121-2

  • Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal., 20 (7), 1126–1167.

  • Mullick, A. E., Tobias, P. S., Curtiss, L. K. (2005). Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest., 115 (11), 3149–3156.

  • Myoishi, M., Hao, H., Minamino, T., Watanabe, K., Nishihira, K., Hatakeyama, K., Asada, Y., Okada, K., Ishibashi-Ueda, H., Gabbiani, G., Bochaton-Piallat, M. L., Mochizuki, N., Kitakaze, M. (2007). Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation, 116 (11), 1226–1233.

  • O’Reilly, N., Menezes, N., Kavanagh, K. (2012). Positive correlation between serum immunoreactivity to Demodex-associated Bacillus proteins and erythematotelangiectatic rosacea. Brit. J. Dermatol., 167 (5), 1032–1036.

  • Oztas, M. O., Balk, M., Ogüs, E., Bozkurt, M., Ogüs, I. H., Ozer, N. (2003). The role of free oxygen radicals in the aetiopathogenesis of rosacea. Clin. Exp. Dermatol., 28 (2), 188–192.

  • Pant, S., Deshmukh, A., Gurumurthy, G. S., Pothineni, N. V., Watts, T. E., Romeo, F., Mehta, J. L. (2014). Inflammation and atherosclerosis – revisited. J. Cardiovasc. Pharmacol. Ther., 19 (2),170–178.

  • Park, K., Elias, P. M., Oda, Y., Mackenzie, D., Mauro, T., Holleran, W. M., Uchida, Y. (2011). Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, vitamin D receptor-independent pathway. J. Biol. Chem., 286 (39), 34121–34130.

  • Pateras, I., Giaginis, C., Tsigris, C., Patsouris, E., Theocharis, S. (2014). NF-κB signaling at the crossroads of inflammation and atherogenesis: Searching for new therapeutic links. Expert Opin. Ther. Targets, 18 (9), 1089–1101.

  • Pirillo, A., Norata, G. D., Catapano, A. L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm., 2013, 152786.

  • Quillard, T., Araśjo, H. A., Franck, G., Shvartz, E., Sukhova, G., Libby, P. (2015). TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J., 36 (22), 1394–1404.

  • Reinholz, M., Ruzicka, T., Schauber, J. (2012). Cathelicidin LL-37: An antimicrobial peptide with a role in inflammatory skin disease. Ann. Dermatol., 24 (2), 126–135.

  • Rosales, C., Demaurex, N., Lowell, C. A., Uribe-Querol, E. (2016) Neutrophils: Their role in innate and adaptive immunity. J. Immunol. Res., 2016, 1469780.

  • Salvado, M. D., Di Gennaro, A., Lindbom, L., Agerberth, B., Haeggström, J. Z. (2013). Cathelicidin LL-37 induces angiogenesis via PGE2-EP3 signaling in endothelial cells, in vivo inhibition by aspirin. Arterioscler. Thromb. Vasc. Biol., 33 (8), 1965–1972.

  • Schoneveld, A. H., Oude Nijhuis, M. M., van Middelaar, B., Laman, J. D., de Kleijn, D. P., Pasterkamp, G. (2005). Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovasc. Res., 66 (1), 162–169.

  • Shibata, M., Katsuyama, M., Onodera, T., Ehama, R., Hosoi, J., Tagami, H. (2009). Glucocorticoids enhance Toll-like receptor 2 expression in human keratinocytes stimulated with Propionibacterium acnes or proinflammatory cytokines. J. Invest. Dermatol., 129 (2), 375–382.

  • Soundaravally, R., Pukazhvandthen, P., Zachariah, B., Hamide, A. (2013). Plasma ferritin and indices of oxidative stress in Helicobacter pylori infection among schoolchildren. J. Pediatr. Gastroenterol. Nutr., 56 (5), 519–522.

  • Sozen, E., Ozer, N. K. (2017). Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review. Redox Biol., 12, 456–461.

  • Spoendlin, J., Voegel, J. J., Jick, S. S., Meier, C. R. (2012).Astudy on the epidemiology of rosacea in the U.K. Brit. J. Dermatol., 167 (3), 598–605.

  • Steinhoff, M., Schauber, J., Leyden, J. J. (2013). New insights into rosacea pathophysiology: A review of recent findings. J. Amer. Acad. Dermatol., 69 (6 Suppl. 1), S15–26.

  • Steinhoff, M., Schmelz, M., Schauber, J. (2016). Facial erythema of Rosacea: aetiology, different pathophysiologies and treatment options. Acta Derm. Venereol., 96 (5), 579–586.

  • Takci, Z., Bilgili, S. G., Karadag, A. S., Kucukoglu, M. E., Selek, S., Aslan, M. (2015). Decreased serum paraoxonase and arylesterase activities in patients with rosacea. J. Eur. Acad. Dermatol. Venereol., 29 (2), 367–370.

  • Tisma, V. S., Basta-Juzbasic, A., Jaganjac, M., Brcic, L., Dobric, I., Lipozencic, J., Tatzber, F., Zarkovic, N., Poljak-Blazi, M. (2009). Oxidative stress and ferritin expression in the skin of patients with rosacea. J. Amer. Acad. Dermatol., 60 (2), 270–276.

  • Tüzün, Y., Keskin, S., Kote, E. (2010). The role of Helicobacter pylori infection in skin diseases: Facts and controversies. Clin. Dermatol., 28 (5), 478–482.

  • Two, A. M., Wu, W., Gallo, R. L., Hata, T. R. (2015). Rosacea: Part I. Introduction, categorization, histology, pathogenesis, and risk factors. J. Amer. Acad. Dermatol., 72 (5), 749–758; quiz 759–760.

  • West, X. Z., Malinin, N. L., Merkulova, A. A., Tischenko, M., Kerr, B. A., Borden, E. C., Podrez, E. A., Salomon, R. G., Byzova, T. V. (2010). Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature, 467 (7318), 972–976.

  • Wilkin, J., Dahl, M., Detmar, M., Drake, L., Feinstein, A., Odom, R., Powell, F. (2002). Standard classification of rosacea: Report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. J. Amer. Acad. Dermatol., 46 (4), 584–587.

  • Wright, J. A., Richards, T., Srai, S. K. (2014). The role of iron in the skin and cutaneous wound healing. Front Pharmacol. 5, 156.

  • Yamasaki, K., Di Nardo, A., Bardan, A., Murakami, M., Ohtake, T., Coda, A., Dorschner, R. A., Bonnart, C., Descargues, P., Hovnanian, A., Morhenn, V. B., Gallo, R. L. (2007). Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat. Med., 13 (8), 975–980.

  • Yamasaki, K., Gallo, R. L. (2009). The molecular pathology of rosacea. J. Dermatol. Sci., 55 (2), 77–81.

  • Yamasaki, K., Kanada, K., Macleod, D. T., Borkowski, A. W., Morizane, S., Nakatsuji, T., Cogen, A. L., Gallo, R. L. (2011). TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Invest. Dermatol., 131 (3), 688–697.

  • Yazici, A. C., Tamer, L., Ikizoglu, G., Kaya, T. I., Api, H., Yildirim, H., Adiguzel, A. (2006). GSTM1 and GSTT1 null genotypes as possible heritable factors of rosacea. Photodermatol. Photoimmunol. Photomed., 22 (4), 208–210.

  • Yoshino, H., Kashiwakura, I. (2017). Involvement of reactive oxygen species in ionizing radiation-induced upregulation of cell surface Toll-like receptor 2 and 4 expression in human monocytic cells. J. Radiat. Res., 22, 1–10.

  • Zeeshan, H. M., Lee, G. H., Kim, H. R., Chae, H. J. (2016). Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci., 17 (3), 327.

OPEN ACCESS

Journal + Issues

Search