Microorganisms of Grape Berries

Open access


Grape surface is an unstable habitat that changes greatly according to the stage of grape ripening. Different bacteria and yeasts can colonise the surface of grape berry and the diversity of microorganisms depends on the stage of ripening, pesticide application and health condition. The aim of this study was to study the microflora of the surface of grape berries. Altogether, 19 grape samples from Slovakia were collected. The spread plate method was applied and a 100 μL inoculum of each dilution (10−2, 10−3) was plated on TSA, MEA, and MRS agar for isolation of microorganisms from grapes. Proteins were extracted from cells by ethanol/formic acid extraction procedure. MALDI-TOF Mass Spectrometry was used for identification of microorganisms. In total, 11 genera of Gram-negative bacteria, 11 of Gram-positive bacteria and nine of yeasts were identified. Among 200 isolates, Gram-negative, Gram-positive bacteria and yeasts represented 11%, 27% and 62% of the total number of isolates studied. The most common genera of isolated yeasts were Hanseniaspora (37%), Metschnikowia (31%), and Rhodotorula (10%). The most frequently isolated among Gram-negative bacteria were Acinetobacter (22%), Pseudomonas (22%) and Sphingomonas (13%). The most common genera of Gram-positive bacteria were Bacillus (20%), Lactobacillus (19%), Leuconostoc and Staphylococcus (11%), respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andriy A. S. Andriy Y. V. (2009). Candida famata (Debaryomyces hansenii). In: Satyanarayana T. Kunze G. (eds.). Yeast Biotechnology: Diversity and Applications. Springer Netherlands pp. 85–111.

  • Arena M. P. Romano A. Capozzi V. Beneduce L. Ghariani M. Grieco F. Lucas P. Spano G. (2011). Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deaminase genes in wine correlates with substrate availability. Lett. Appl. Microbiol. 53 395–402.

  • Bae S. Fleet G. H. Heard G. M. (2006). Lactic acid bacteria associated with wine grapes from several Australian vineyards. J. Appl. Microbiol.100 712–727.

  • Balkwill D. L. Fredrickson J. K. Romine M. F. (2006). Sphingomonas and related genera. In: Dworkin M. et al. (eds.). The Prokaryotes. Springer Verlag New York pp. 605–629.

  • Barata A. Malfeito-Ferreira M. Loureiro V. (2012). The microbial ecology of wine grape berries. Int. J. Food Microbiol.153 253–259.

  • Barbe J. C. De Revel G. Joyeux A. Bertrand A. Lonvaud-Funel A. (2001). Role of botrytized grape microorganisms in SO2 binding phenomena. J. Appl. Microbiol.90 34–42.

  • Bartowsky E. J. (2009). Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48 149–156.

  • Beltran G. Torija M. J. Novo M. Ferrer N. Poblet M. Guillamon J. M. Rozes N. Mas A. (2002). Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst. Appl. Microbiol.25 287–293.

  • Bokulich N. A. Joseph C. M. Allen G. Benson A. K. Mills D. A. (2012). Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One 7(e) 36357.

  • Bulgari D. Casati P. Brusetti L. Quaglino F. Brasca M. et al. (2009). Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J. Microbiol.47 393–401.

  • Čadež N. Zupan J. Raspor P. (2010). The effect of fungicides on yeast communities associated with grape berries. Federation of European Microbial Societies (FEMS) Yeast Res.10 619–630.

  • Capozzi V. Ladero V. Beneduce L. Fernandez M. Alvarez M. A. Benoit B. Laurent B. Grieco F. Spano G. (2011). Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol. 28 434–439.

  • Chavan P. Mane S. Kulkarni G. Shaikh S. Ghormade V. Nerkar D. P. Shouche Y. Deshpande M. V. (2009). Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol.26 801–808.

  • Clemente-Jimenez J. M. Mingorance-Carzola L. Martinez-Rodriguez S. Las Heras-Vazquez F. J. Rodriguez-Vico F. (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol.21 149–155.

  • Combina M. Mercado L. Borgo P. Elia A. Joofre V. Ganga A. Martinez C. Catania C. (2005). Yeasts associated to Malbec grape berries from Mendoza Argentina. J. Appl. Microbiol.98 1055–1061.

  • Comitini F. Ciani M. (2008). Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol.58 489–493.

  • Compant S. Clément C. Sessitsch A. (2010). Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role colonization mechanisms involved and prospects for utilization. Soil Biol. Biochem.42 669–678.

  • Compant S. Mitter B. Colli-Mull J. G. Gangl H. Sessitsch A. (2011). Endophytes of grapevine flowers berries and seeds: Identification of cultivable bacteria comparison with other plant parts and visualization of niches of colonization. Microb. Ecol.62 188–197.

  • Cordero-Bueso G. Arroyo T. Serrano A. Tello J. Aporta I. Vélez M. D. (2011). Influence of the farming system and vine variety on yeast communities associated with grape-berries. Int. J. Food Microbiol.145 132–139.

  • Csoma H. Sipiczki M. (2008). Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Res.8 328–336.

  • Davenport R. R. (1974). Micro ecology of yeasts and yeast like organisms associated with an English vineyard. Vitis13 123–130.

  • de Andrés-De Prado R. Yuste-Rojas M. Sort X. Andrés Lacueva C. Torres M. Lamuela-Raventós R. M. (2007). Effect of soil type on wines produced from Vitis vinifera L. cv. Grenache in commercial vineyards. J. Agric. Food Chem.55 (3) 779–786.

  • Deák T. (2007). Handbook of Food Spoilage Yeasts. CRC Press. 352 pp.

  • Delfini C. Gaia P. Schellino R. Strano M. Pagliara A. Ambró S. (2002). Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC). J. Agric. Food Chem.50 5605–5611.

  • Fernández M. Úbeda J. F. Briones A. I. (2000). Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int. J. Food Microbiol.59 29–36.

  • Fleet G. H. (1990). Growth of yeasts during wine fermentations. J. Wine Res.1 211–223.

  • Fleet G. H. (2003). Yeast interactions and wine flavour. Int. J. Food Microbiol.86 11–22.

  • Fleet G. H. Prakitchaiwattana C. J. Beh A. L. Heard G. M. (2002). The yeast ecology of wine grapes. In: Ciani M. (Ed.). Biodiv. Biotech. Wine Yeasts 1–17.

  • Gonzáles Á. Guillamón J. M. Mas A. Poblet M. (2006). Application of molecular methods for routine identification of acetic acid bacteria. Int. J. Food Microbiol.108 141–146.

  • Hierro N Gonzales A. Mas A. Guillamón J. M. (2006). Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: Effect of grape ripeness and cold maceration. FEMS Yeast Res. 6 102–111.

  • Ibarra J. C. Ortiz-Gutiérrez M. Alonso-Magana P. (2004). Characterization of bromocresol green and resin as holographic film. Opt. Mater.27 567–572.

  • Jolly N. Augustyn O. Pretorius I. (2003). The occurrence of non-Saccharomyces cerevisiae yeast species over three vintages in four vineyards and grape musts from four production regions of the Western Cape South Africa. S. Afr. J. Enol. Vitic.24 35–42.

  • König H. Unden G. Fröhlich J. (eds.) (2009). Biology of Microorganisms on Grapes in Must and in Wine. Springer-Verlag Berlin Heidelberg. 522 pp.

  • Kourkoutas Y. Dimitropoulou S. Kanellaki M. Marchant R. Nigam P. Banat I. M. Koutinas A. (2002). High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour. Technol.82 177–181.

  • Kurtzman C. P. Droby S. (2001). Metschnikowia fructicola a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst. Appl. Microbiol. 24 395–399.

  • Lerm E. Engelbrecht L. Du Toit M. (2010). Lactobacillus: The next generation of malolactic fermentation starter cultures: An overview. Food Bioprocess Tech.4 876-906.

  • Li S. S. Cheng C. Li Z. Chen J. Y. Yan B. Han B. Z. Reeves M. (2010). Yeast species associated with wine grapes in China. Int. J. Food Microbiol.138 85–90.

  • Lonvaud-Funel A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Ant. Van Leeuwen. 76 317–331.

  • Loureiro V. Malfeito-Ferreira M. (2003). Spoilage yeasts in the wine industry. Int. J. Food Microbiol.86 23–50.

  • Marklein G. Josten M. Klanke U. Müller E. Horré R. Maier T. Wenzel T. Kostrzewa M. Bierbaum G. Hoerauf A. Sahl H. G. (2009). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol.47 (9) 2912–2917.

  • Martini A. (1993). Origin and domestication of the wine yeast Saccharomyces cerevisiae. J. Wine Res.4 165–176.

  • Martini A. Ciani M. Scorzetti G. (1996). Direct enumeration and isolation of wine yeasts from grape surfaces. Amer. J. Enol. Vitic.47 435–440.

  • Molnar O. Prillinger H. (2005). Analysis of yeast isolates related to Metschnikowia pulcherrima using the partial sequences of the large subunit rDNA and the actin gene; description of Metschnikowia andauensis sp. nov. Syst. Appl. Microbiol. 28 717–726.

  • Nisiotou A. A. Rantsiou K. Iliopoulos V. Cocolin L. Nychas G. J. E. (2011). Bacterial species associated with sound and Botrytis-infected grapes from a Greek vineyard. Int. J. Food Microbiol.145 432–436.

  • Pan W. Jussier D. Terrade N. Yada R. Y. Mirade-Orduna R. (2011). Kinetics of sugars organic acids and acetaldehyde during simultaneous yeast-bacterial fermentations of white wine at different pH values. Food Res. Int. 44 660–666.

  • Pavlovic M. Mewes A. Maggipinto M. Schmidt W. Messelhäußer U. Balsliemke J. Hörmansdorfer S. Busch U. Huber I. (2014). MALDI-TOF MS based identification of food-borne yeast isolates. J. Microbiol. Methods106 123–128.

  • Peter G. Tornai-Lehoczki J. Suzuki M. Dlauchy D. (2005). Metschnikowia viticola sp. nov. a new yeast species from grape. Ant. Van Leeuwen.87 155–160.

  • Portillo Mdel C. Franqučs J. Araque I. Reguant C. Bordons A. (2015). Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia Spain). Int. J. Food Microbiol.219 56–63.

  • Prakitchaiwattana C. J. Fleet G. H. Heard G. M. (2004). Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res.4 865–877.

  • Pretorius I. S. (2000). Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast16 675–729.

  • Quesada M. Cenis J. (1995). Use of random amplified polymorphic DNA in the characterization of wine yeasts. Amer. J. Enol. Vitic.46 (2) 204–208.

  • Raspor P. Milek D. M. Polanc J. Možina S. S. Čadež N. (2006). Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine growing region Slovenia. Int. J. Food Microbiol.109 97–102.

  • Rekah Y. Shtienberg D. Katan J. (2000). Disease development following infection of tomato and basil foliage by airborne conidia of the soilborne pathogens Fusarium oxysporum f. sp. radicis-lycopersici and F. oxysporum f. sp. basilici. Phytopathology90 1322–1329.

  • Renouf V. Claisse O. Lonvaud-Funel A. (2005). Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust. J. Grape Wine Res.11 316–327.

  • Renouf V. Claisse O. Lonvaud-Funel A. (2007). Inventory and monitoring of wine microbial consortia. Appl. Microbiol. Biotech.75 149–164.

  • Sabate J. Cano J. Esteve-Zarzoso B. Guillamón J. M. (2002). Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res.157 267–274.

  • Singh R. Gaur R. Tiwari S. Gaur M. K. (2012). Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process. Braz. J. Microbiol.43 1042–1050.

  • Subden R. Husnik J. Van Twest R. Van Der Merwe G. Van Vuuren H. (2003). Autochthonous microbial population in a Niagara Peninsula ice wine must. Food Res. Inter.36 747–751.

  • Suh S. O. Gibson C. M. Blackwell M. (2004). Metschnikowia chrysoperlae sp. nov. Candida picachoensis sp. nov. and Candida pimensis sp. nov. isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int. J. Syst. Evol. Microbiol. 54 1883–1890.

  • Torija M. J. Rozes N. Poblet M. Guillamon J. M. Mas A. (2001). Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years. Ant. Van Leeuwen.79 345–352.

  • Tournas V. H. Katsoudas E. (2005). Mould and yeast flora in fresh berries grapes and citrus fruits. Int. J. Food Microbiol.105 11–17.

  • Towner K. (2006). The Genus Acinetobacter. In: Dworkin M. et al. (eds.) The Prokaryotes. Springer Verlag New York pp. 746–758.

  • Valero E. Schuller D. Cambon B. Casal M. Dequin S. (2005). Dissemination and survival of commercial wine yeast in the vineyard: A large scale three-year study. FEMS Yeast Res.5 959–969.

  • Van Veen S. Q. Claas E. C. J. Kuijper E. J. (2010). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol.48 (3) 900–907.

  • Velázquez J. B. Longo E. Cansado J. Villa T. G. Sieiro C. Calo P. (1991). Improvement of the alcoholic fermentation of grape juice with mixed cultures of Saccharomyces cerevisiae wild strains. Negative effect of Kloeckera apiculata. World J. Microbiol. Biotech.7 485–489.

  • Verginer M. Leitner E. Berg G. (2010). Production of volatile metabolites by grape-associated microorganisms. J. Agric. Food Chem. 58 8344–8350.

  • West E. R. Cother E. J. Steel C. C. Ash G. J. (2010). The characterization and diversity of endophytes of grapevine. Can. J. Microbiol.56 209–216.

  • Zarraonaindia I. Owens S. M. Weisenhorn P. West K. Hampton-Marcell J. Lax S. Bokulich N. A. Mills D. A. Martin G. Taghavi S. van der Lelie D. Gilbert J. A. (2015). The soil microbiome influences grapevine-associated microbiota. mBio6 (2) e02527–14.

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 415 240 8
PDF Downloads 229 162 1