Antimicrobial Effect of Sage (Salvia officinalis L.) and Rosemary (Rosmarinus officinalis L.) Essential Oils on Microbiota of Chicken Breast

Open access


The aim of the study was to evaluate the antimicrobial effect of sage and rosemary essential oils (EO) on microbiota of fresh chicken breast. Sample treatments were stored without packaging, vacuum-packaged, vacuum-packaged with EDTA 1.5% v/w, sage and rosemary EO treatment 0.2% v/w. Assessment of food quality was done by anaerobic plate count (APC), and Enterobacteriaceae, lactic acid bacteria (LAB) and Pseudomonas spp. counts a period of 16 days of storage at 4 ± 0.5 °C. Bacterial species were identified with a MALDI TOF MS Biotyper. Antimicrobial activity of isolates against both EO were tested. The APC varied from 2.97 log CFU/g to 6.81 log CFU/g, LAB from 2.35 log CFU/g to 3.36 log CFU/g and Enterobacteriaceae from 0.00 log CFU/g on day 0 to 4.77 log CFU/g with the highest counts on day 16 and in control unpackaged samples. Pseudomonas spp. was found only on days 0, 4, 8, and 12, with counts from 0.00 log CFU/g on day 16 to 2.89 log CFU/g on day 4 in control unpackaged samples. APC were represented by Staphylococcus and Kocuria, LAB with Lactobacillus and Enterobacteriaceae with Buttiauxella, Escherichia, Hafnia, Serratia and Yersinia. The Pseudomonas genus was represented by ten species. The best antimicrobial effect on APC, Enterobacteriaceae, LAB and Pseudomonas was achieved by application of EO. The results suggest the potential use of Salvia officinalis L. and Rosmarinus officinalis L. EOs as natural food preservatives and potential sources of antimicrobial ingredients in the food industry.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bajpai V.K. Rahman A. Kang S. C. (2008). Chemical composition and inhibitory parameters of essential oil and extracts of Nandina domestica Thunb to control food-borne pathogenic and spoilage bacteria. Int. J. Food Microbiol. 125 (2) 117–122.

  • Bazargani-Gilani B. Aliakbarlu J. Tajik H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innovative Food Sci. Emerg. Technol. 29 280–287.

  • Beheshti-Rouy M. Azarsina M. Rezaie-Soufi L. Yousef Alikhani M. Roshanaie G. Komaki S. (2015). The antibacterial effect of sage extract (Salvia officinalis) mouthwash against Streptococcus mutans in dental plaque: A randomized clinical trial. Iran J. Microbiol. 7 (3) 173–177.

  • Burt S. (2004). Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94 (3) 223–253.

  • Chouliara E. Karatapanis A. Savvaidis I. N. Kontominas M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat stored at 4 °C. Food Microbiol. 24 (6) 607–617.

  • Chouliara E. Badeka A. Savvaidis I. Kontominas M. G. (2008). Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: Microbiological chemical and sensory changes. Eur. Food Res. Technol. 226 877–888.

  • Derwich E. Benziane Z. Chabir R. (2011). Aromatic and medicinal plants of Morocco: Chemical composition of essential oils of Rosmarinus officinalis and Juniperus phoenicea. Int. J. Appl. Biol. Pharm. Technol. 2 (1) 145–153.

  • Economou T. Pournis N. Ntzimani A. Savvaidis I. (2009). Nisin–EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life. Food Chem. 114 1470–1476.

  • Fernández-Pan I. Carrión-Granda X. Maté J.I. (2014). Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control36 69–75.

  • Jiang Y. Wu N. Fu Y.-J. Wang W. Luo M. Zhao C.-J. Zu Y.-G. Liu X.-L. (2011). Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ. Toxicol. Pharmacol. 32 63–68.

  • Fratianni F. De Martino L. Melone A. De Feo V. Coppola R. Nazzaro F. (2010). Preservation of chicken breast meat treated with thyme and balm essential oils. J. Food Sci. 75 (8) M528–M535.

  • Kačániová M. Terentjeva M. Puchalski C. Petrová J. Hutková J. Kántor A. Mellen M. Čuboņ J. Haščík P. Kluz M. Kordiaka R. Kunová S. (2016). Microbiological quality of chicken thighs meat after application of essential oils combination EDTA and vaccum packing. Potravinarstvo10 (1) 107–113.

  • Khanjari A. Karabagias I. K. Kontominas M. G. (2013). Combined effect of NO-carboxymethyl chitosan and oregano essential oil to extend shelf life and control Listeria monocytogenes in raw chicken meat fillets. LWT—Food Sci. Technol. 53 (1) 94–99.

  • Koul O. Walia S. Dhaliwal G.S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides Int. 4 (1) 63–84.

  • Longaray Delamare A. P. Moschen-Pistorello I. T. Artico L. Atti-Serafini L. Echeverrigaray S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 100 603–608.

  • Lu F. Ding Y. Ye X. Liu D. (2010). Cinnamon and nisin in alginate–calcium coating maintain quality of fresh northern snakehead fish fillets. LWT Food Sci. Technol. 43 1331–1335.

  • Miladinović D. Miladinović L. (2000). Antimicrobial activity of essential oil of sage from Serbia. Facta Univers. Ser. Physics Chem. Technol. 2 (2) 97–100.

  • Ntzimani A. G. Giatrakou V. I. Savvaidis I. N. (2010). Combined natural antimicrobial treatments (EDTA lysozyme rosemary and oregano oil) on semicooked coated chicken meat stored in vacuum packages at 4 °C: Microbiological and sensory evaluation. Innov. Food Sci. Emer. Technol. 11 (1) 187–196.

  • Ntzimani G. Giatrakou V.I. Savvaidis I.N. (2011). Combined natural antimicrobial treatments on a ready-to-eat poultry product stored at 4 and 8 °C A. Poultry Sci. 90 (4) 880–884.

  • Oussalah M. Caillet S. Saucier L. Lacroix M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci. 73 (2) 236–244.

  • Pokorny J. Yanishlieva N. Gordon M. (2001). Antioxidants in Food. Cambrige: Woodhead publishing Ltd. 400 pp.

  • Porte A. Godoy R. Lopes D. Koketsu M. Torquilho S. L. Torquilho H. (2000). Essential oil of Rosmarinus officinalis L. (rosemary) from Rio de Janeiro Brazil. J. Essent. Oil Res. 12 577–580.

  • Prabuseenivasan S. Jayakumar M. Ignacimuthu S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complem. Alter. Med. 6 39.

  • Raal A. Orav A. Arak E. (2007). Composition of the essential oil of Salvia officinalis L. from various European countries. Nat. Product Res. 21 (5) 406–411.

  • Raeisi M. Tajik H. Aliakbarlu J. Mirhosseini S. H. Hosseini S. M. H. (2015). Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT Food Sci. Technol. 64 898–904.

  • Skandamis P. Nychas G.J. (2001). Effect of oregano essential on microbiological and physicochemical attributes of minced meat stored in air and modified atmospheres. J. Appl. Microbiol. 91 (1) 1011–1022.

  • Tsigarida E. Skandamis P. Nychas G.J.E. (2000). Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 °C. J. Appl. Microbiol. 89 (6) 901–909.

  • Verma R. S. Padalia R. C. Chauhan A. (2015). Harvesting season and plant part dependent variations in the essential oil composition of Salvia officinalis L. grown in northern India. J. Herb. Med. 5 (3) 165–171.

  • Zaika L. L. Kissinger J. G. Wasserman A. E. (1983). Inhibition of lactic acid bacteria by herbs. J. Food Sci. 48 (5) 1455–1459.

  • Zeitoun A. A. M. Debevere J. M. Mossel D. A. A. (1994). Significance of Enterobacteriaceae as index organisms for hygiene on fresh and treated poultry poultry treated with lactic acid and poultry stored in a modified atmosphere. Food Microbiol. 11 (2) 169–176.

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 165 5
PDF Downloads 178 127 5