Composition and Concentration of Phenolic Compounds of ‘Auksis’ Apple Grown on Various Rootstocks

Darius Kviklys 1 , Mindaugas Liaudanskas 2 , Jonas Viškelis 1 , Loreta Buskienė 1 , Juozas Lanauskas 1 , Nobertas Uselis 1  and Valdimaras Janulis 2
  • 1 Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, LT-54333, Babtai, Kaunas distr., , Lithuania
  • 2 Department of Pharmacognosy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT-44307 , Kaunas, Lithuania

Abstract

The trial was carried out at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2013-2015. Cv. ‘Auksis’ was tested on 12 rootstocks: B.396, B.9, M.9, M.26, P 22, P 59, P 61, P 62, P 66, P 67, PB.4, and Pure 1. Accumulation of phenolic compounds depended on fruit yield and average fruit weight. On average, significantly lower concentration among rootstocks occurred when apple trees had abundant yield and fruits were smaller. On average chlorogenic acid constituted 50% and total procyanidins 28% of total phenols in ‘Auksis’ fruits. Flavonoid concentration most depended on rootstock and the highest variation was recorded. More than 50% difference occurred between the highest total flavonoid concentration in apples on PB.4 and the lowest on M.9 rootstocks. Low variability of total procyanidin concentration among rootstocks was observed. Differences between the highest and lowest concentration was 15%. Total concentration of phenolic compounds differed among rootstocks by 29-35% depending on the year. Differences in accumulation of phenolic compounds depended on rootstock genotype but not on yield or fruit weight. PB.4 and P 67 rootstocks had the highest, and M.9, P 62 and M.26 had the lowest concentration of total phenol in ‘Auksis’ fruits

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Awad, M., Wagenmakers, P., deJager, A. (2001). Effects of light on flavonoids and chlorogenic acid levels in the skin of ‘Jonagold‘ apples. Sci. Hort., 88, 289-298.

  • Awad, M. A., de Jager, A. (2002). Relationships between fruit nutrients and concentrations of favonoids and chlorogenic acid in ‘Elstar’ apple skin. Sci. Hort., 92, 265-276.

  • Bauer, H., Treutter, D., Schmid, P. P. S., Schmitt, E., Feucht, W. (1989). Specific accumulation of o-diphenols in stressed leaves of Prunus avium. Phytochemistry, 28, 1363-1364.

  • Buer, C. S., Imin, N., Djordjevic, M. A. (2010). Flavonoids: New roles for old molecules. J. Integrative Plant Biol., 52 (1), 98-111

  • Ceymann, M., Arrigoni, E., Schärer ,H., Nising, A. B., Hurrell, R. (2012). Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. J. Food Compos. Anal., 26,128-135.

  • Feng, F., Li, M., Ma, F., Cheng, L. (2014). Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Hort. Res., Article number: 14019 (2014). doi:

    • Crossref
    • Export Citation
  • Gil-Izquierdo, A., Riquelme, M., Porras, I., Ferreres, F. (2004). Effect of the rootstock and interstock grafted in lemon tree (Citrus limon (L.) Burm.) on the flavonoid content of lemon juice. J. Agric. Food Chem., 52, 324-331.

  • Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Bilger, W., Berge, A., Haffner, K., Solhaug, K. A. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): Effect of postharvest UV-B irradiation. Postharv. Biol. Technol., 45, 1-10.

  • Ju, Z., Liu, C., Yuan, Y., Wang, Y., Liu, G. (1999). Coloration potential, anthocyanin accumulation, and enzyme activity in fruit of commercial apple cultivars and their F1 progeny. Sci. Hort., 79, 39-50.

  • Kviklys, D., Čeidaitė, A., Lanauskas, J., Uselis, N., Samuolienė G. (2016). The effect of rootstock on apple tree bearing stability in a cooler climate. Agric. Food Sci., 25 (1), 81-88.

  • Kviklys, D., Liaudanskas, M., Janulis, V., Viðkelis, P., Rubinskienė, M., Lanauskas, J., Uselis, N. (2014). Rootstock genotype determines phenol content in apple fruits. Plant Soil Environ., 60 (5), 234-240.

  • Kviklys, D., Kviklienė, N., Bielicki, P., Bite, A., Lepsis, J., Univer, T., Univer, N., Uselis, N., Lanauskas J. (2013). Baltic fruit rootstock studies: Evaluation of apple (Malus domestica Borkh.) new rootstocks. Zemdirbyste-Agriculture, 100 (4), 441-446.

  • Lanauskas, J., Kviklys, D., Liaudanskas, M., Janulis, V., Uselis, N., Viškelis, J., Viðkelis, P. (2017). Lower nitrogen nutrition determined higher phenolic content of organic apples. Hort. Sci. (Prague) (in press). Available at: http://www.agriculturejournals.cz/web/hortsci.htm?type=article&id=50_2016-HORTSCI

  • Lepsis, J., Bite A., Kviklys D., Univer N. (2014). Evaluation of ‘Auksis’ apple trees On dwarfing rootstocks in the Baltic Region. Acta Hort., 1058, 601-606.

  • Liaudanskas, M., Viškelis, P., Kviklys, D., Raudonis, R., Janulis, V. (2015). A comparative study of phenolic content in apple fruits. Int. J. Food Properties, 18 (5), 945-953.

  • Mainla, L., Moor, U., Karp, K., Püssa, T. (2011). The effect of genotype and rootstock on polyphenol composition of selected apple cultivars in Estonia. Þemdirbystë-Agriculture, 98 (1), 63-70.

  • Mittelstraß, K., Treutter, D., Pleßl, M., Heller, W., Elstner, E. F., Heiser, I. (2006). Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biol., 8, 653-661.

  • Scalzo, J., Politi, A., Pellegrini, N., Mezzetti, B., Battino, M. (2005). Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition, 21, 207-213.

  • Sun, J., Chu, Y., Wu, X., Liu, R. (2002). Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem., 50, 7449-7454.

  • Univer, T., Kviklys, D., Lepsis, J., Univer, N. (2010). Early performance of “Auksis“ apple trees on dwarfing rootstocks in Baltic region. Agron. Res., 8, 743-748.

  • Wang, X., Li, C., Liang, D., Zou, Y., Li, P., Ma, F. (2015). Phenolic compounds and antioxidant activity in red-fleshed apples. J. Funct. Foods, 18, 1086-1094.

  • Wang, S. Y., Lin, H. S. (2003). Compost as a soil supplement increases the level of antioxidant compounds and oxygen radical absorbance capacity in strawberries. J. Agric. Food Chem., 51, 6844-6850.

  • Wolfe, K, Wu, X, Liu, R. (2003). Antioxidant activity of apple peels. J. Agric. Food Chem., 51, 609-614.

  • Xu, Y., Fan, M., Ran, J., Zhang, T., Sun, H., Dong, M., Zhang, Z., Zheng, H. (2016). Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi J. Biol. Sci., 23, 379-388.

OPEN ACCESS

Journal + Issues

Search