Analysis of the Genetic Diversity and Population Structure of Latvian Ash (Fraxinus excelsior L.) Stands using Nuclear and Chloroplast SSR Markers

Open access


Common ash (Fraxinus excelsior L.) has a widespread distribution throughout Europe, and Latvia is almost at the north eastern edge of the distribution range. In Europe, ash is threatened by ash dieback, a disease caused by the introduced ascomycete Hymenoscyphus fraxineus. Chloroplast and nuclear DNA markers have been used to study the genetic diversity and population structure of ash both in a broader pan-European context as well as in more restricted regions. Some of the markers analysed in these previously published reports were also utilised in this study, enabling comparisons of the genetic parameters calculated from the nuclear SSR marker data and of the haplotypes identified with the chloroplast markers. Analysis of chloroplast markers revealed one dominant haplotype in Latvian stands, which corresponds to the haplotype previously found in Eastern Europe and Scandinavia. A second haplotype, corresponding to a previously reported central European haplotype was found in all individuals from the Ķemeri stand, indicating that this stand was naturally established from introduced germplasm, which was planted in a neighbouring park. The nuclear SSR markers revealed low levels of differentiation of Latvian F. excelsior stands, probably due efficient pollen flow between stands. The analysis of both chloroplast and nuclear DNA markers has revealed different aspects of the structure and provenance of Latvian F. excelsior populations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anonymous (2005). Fraxigen. Ash Species in Europe: Biological Characteristics and Practical Guidelines for Sustainable Use. University of Oxford Oxford. 128 pp.

  • Anonymous (2009). EUFORGEN. Distribution maps Fraxinus excelsior L. Available at: (accessed 22 December 2015).

  • Anonymous (2014). State Forest Service. Forest Statistics 2014 (MS Excel spreadsheets) CD ROM.

  • Bacles C. F. Burczyk J. Lowe A. J. Ennos R. A. (2005). Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution59 (5) 979–990.

  • Ballian D. Monteleone I. Ferrazzini D. Kajba D. Belletti P. (2008). Genetic characterization of common ash (Fraxinus excelsior L.) populations in Bosnia and Herzegovina. Periodicum Biologorum110 (4) 323–328.

  • Brachet S. Jubier M. F. Richard M. Jung-Muller B. Frascaria-Lacoste N. (1999). Rapid identification of microsatellite loci using 5’anchored PCR in the common ash Fraxinus excelsior. Mol. Ecol.8 160–163.

  • Chapuis M. P. Estoup A. (2007). Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol.24 (3) 621–631.

  • Dambis J. Zilgalvis J. Muceniece A. (2007). Vēsturiskie dārzi un parki [Historical Gardens and Parks]. Valsts Kultūras pieminekļu aizsardzības inspekcija Rīga. 143 lpp. (in Latvian)

  • Dobrowolska D. Hein S. Oosterbaan A. Wagner S. Clark J. Skovsgaard J. P. (2011). A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry84 (2) 133–148.

  • Earl D. A. vonHoldt B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Gen. Res. 4 (2) 359–361.

  • Evanno G. Regnaut S. Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol.14 (8) 2611–2620.

  • Ferrazzini D. Monteleone I. Belletti P. (2007). Genetic variability and divergence among Italian populations of common ash (Fraxinus excelsior L.). Ann. For. Sci.64 (2) 159–168.

  • Goudet J. (2001). FSTAT a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: (accessed 11.11.2015).

  • Hebel I. Haas R. Dounavi A. (2006). Genetic variation of common ash (Fraxinus excelsior L.) populations from provenance regions in southern Germany by using nuclear and chloroplast microsatellites. Silvae Genetica55 (1) 38–43.

  • Heuertz M. Hausman J. F. Tsvetkov I. Frascaria-Lacoste N. Vekemans X. (2001). Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Mol. Ecol.10 (7) 1615–1623.

  • Heuertz M. Vekemans X. Hausman J. F. Palada M. Hardy O. J. (2003). Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol. Ecol.12 (9) 2483–2495.

  • Heuertz M. Hausman J. F. Hardy O. J. Vendramin G. G. Frascaria-Lacoste N. Vekemans X. (2004a). Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.). Evolution58 (5) 976–988.

  • Heuertz M. Fineschi S. Anzidei M. Pastorelli R. Salvini D. Paule L. Frascaria-Lacoste N. Hardy O.J. Vekemans X. Vendramin G. G. (2004b). Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol. Ecol.13 (11) 3437–3452.

  • Kowalski T. (2006). Chalara fraxinea sp nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 36 264–270.

  • Kowalski T. Holdenrieder O. (2009). Pathogenicity of Chalara fraxinea. For. Pathol. 39 1–7.

  • Kupcis J. Lībietis J. (1933/34). Ķemeri. In: Latviešu Konversācijas Vārdnīca. 10. sēj. [Latvian Encyclopaedia. Vol. 10]. Švābe A. (ed.). Rīga 19411–19428 (in Latvian).

  • Laiviņš M. Mangale D. (2004). Parastā oša (Fraxinus excelsior) paaugas izplatība Latvijā [The distribution of young growth of the common ash (F. excelsior) in Latvia]. Mežzinātne13 (46) 61–69 (in Latvian).

  • Lefort F. Brachet S. Frascaria-Lacoste N. Edwards K. J. Douglas G. C. (1999). Identification and characterisation of microsatellite loci in ash (Fraxinus excelsior L.) and their conservation in the olive family (Oleaceae). Mol. Ecol.8 1088–1091.

  • Morand M. E. Brachet S. Rossignol P. Dufour J. Frascaria-Lacoste N. (2002). A generalized heterozygote deficiency assessed with microsatellites in French common ash populations. Mol. Ecol.11 (3) 377–385.

  • Pasqualotto A. C. Denning D. W. Anderson M. J. (2007). A cautionary tale: Lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. J. Clin. Microbiol.45 (2) 522–528.

  • Pautasso M. Aas G. Queloz V. Holdenrieder O. (2013). European ash (Fraxinus excelsior) dieback — a conservation biology challenge. Biol. Conserv.158 37–49.

  • Peakall R. Smouse P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28 2537–2539.

  • Pritchard J. K. Stephens M. Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics155 (2) 945–959.

  • Pliura A. Lygis V. Suchockas V. Bartkevicius E. (2011). Performance of twenty four European Fraxinus excelsior populations in three Lithuanian progeny trials with a special emphasis on resistance to Chalara fraxinea. Baltic For.17 (1) 17–34.

  • Tamura K. Peterson D. Peterson N. Stecher G. Nei M. Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol. Biol. Evol.28 (10) 2731–2739.

  • Wallander E. (2008). Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst. Evol. 273 25–49.

  • Wagner C. H. (1822). Preis-Courant derjenigen Gemüse- Blumen- Bäume- und Sträucher- Samen bei C. H. Wagner. Riga 2 s. (in German).

  • Zigra J. H. (1805). Verzeichnis derjenigen exotischen Pflanzen Bäume Sträucher welche in der Gartenhandlungen J. H. Zigra zu Riga. Gedruckt bei Wilchelm Ferdinand Häcker Riga. 42 s. (in German).

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 116 7
PDF Downloads 123 84 7