Functional and Structural Evaluation of Afferent Visual System in Multiple Sclerosis Patients / Funkcionālas un Strukturālas Redzes Sistēmas Izmaiņas Multiplās Sklerozes Pacientiem

Open access

Abstract

There is insufficient information about the progress and variability of multiple sclerosis (MS). Afferent visual pathways are an appropriate MS clinical model. Optical coherence tomography (OCT) allows to perform precise measurements of axonal tissue in the retinal nerve fibre layer (RNFL). Visual evoked potentials (VEP) provide information about the functional status of visual pathways. The aim of our study was to use OCT and VEP to evaluate MS patients with and without optic neuritis (ON) history and to determine relationships between functional and structural changes. The cross-sectional study included 76 relapsing-remitting MS patients and 28 healthy controls. The lowest mean VEP N75/P100 amplitude was found in ON affected eyes (8.16 mkV, SD = 4.60). However, it was observed that the mean amplitude in patients without ON (M = 9.86; SD = 4.63) was by 4.64 mkV lower than in controls (p < 0.001). Similarly, the mean P 100 latency in ON eyes was 9.26 ms longer than in eyes of patients without ON history (p < 0.01). RNFL in the temporal segment (RNFLT) was the thinnest in ON eyes, and even in patient eyes without ON, it was thinner than in controls. We found a significant positive correlation between RNFLT and mean N75/P100 amplitude in patients without ON (rs = 0.43; p < 0.001), and after ON (rs = 0.45; p < 0.001). Both in patients without ON (rs = -0.40; p < 0.001) and in ON eyes we found a significant negative correlation (rs = -0.55; p > 0.001) between RNFLT and mean P100 latency. In summary, we found that deterioration in the visual system was not associated with the clinical ON episode. Regardless of ON symptoms in history, there exists correlation between functional and structural changes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Browne P. Chandraratna D. Angood C. Tremlett H. Baker C. Taylor B. V. A. Thompson J. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology 83 (11) 1022-1024.

  • Bruck W. (2005). The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J. Neurol. 252 Suppl 5 v3-9.

  • Costello F. (2013). The afferent visual pathway: Designing a structuralfunctional paradigm of multiple sclerosis. ISRN Neurology 2013 17.

  • Davies E. C. Galetta K. M. Sackel D. J. Talman L. S. Frohman E. M. Calabresi P. A. Galetta S. L. Balcer L. J. (2011). Retinal ganglion cell layer volumetric assessment by spectral-domain optical coherence tomography in multiple sclerosis: Application of a high-precision manual estimation technique. J. Neuroophthalmol. 31 (3) 260-264.

  • Di Maggio G. Santangelo R. Guerrieri S. Bianco M. Ferrari L. Medaglini S. Rodegher M. Colombo B. Moiola L. Chieffo R. Del Carro U. Martinelli V. Comi G. Leocani L. (2014). Optical coherence tomography and visual evoked potentials: Which is more sensitive in multiple sclerosis? Mult. Scler. 20 (10) 1342-1347.

  • Fatehi F. Shaygannejad V. Mehr L. K. Dehghani A. (2012). Optical coherence tomography versus visual evoked potential in multiple sclerosis patients. Iran J. Neurol. 11 (1) 12-15.

  • Fernandez O. (2013). Integrating the tools for an individualized prognosis in multiple sclerosis. J. Neurol. Sci. 331 (1-2) 10-13.

  • Fisher J. B. Jacobs D. A. Markowitz C. E. Galetta S. L. Volpe N. J. Nano-Schiavi M. L. Baier M. L. Frohman E. M. Winslow H. Frohman T. C. Calabresi P. A. Maguire M. G. Cutter G. R. Balcer L.

  • J. (2006). Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113 (2) 324-332.

  • Fisniku L. K. Chard D. T. Jackson J. S. Anderson V. M. Altmann D. R. Miszkiel K. A. Thompson A. J. Miller D. H. (2008). Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann. Neurol. 64 (3) 247-254.

  • Fjeldstad C. Bemben M. Pardo G. (2011). Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography. J. Clin. Neurosci. 18 (11) 1469-1472.

  • Garcia-Martin E. Pueyo V. Martin J. Almarcegui C. Ara J. R. Dolz I. Honrubia F. M. Fernandez F. J. (2010). Progressive changes in the retinal nerve fiber layer in patients with multiple sclerosis. Eur. J. Ophthalmol. 20 (1) 167-173.

  • Hood D. C. Salant J. A. Arthur S. N. Ritch R. Liebmann J. M. (2010).

  • The location of the inferior and superior temporal blood vessels and interindividual variability of the retinal nerve fiber layer thickness. J. Glaucoma 19 (3) 158-166.

  • Klistorner A. Arvind H. Nguyen T. Garrick R. Paine M. Graham S. O'Day J. Grigg J. Billson F. Yiannikas C. (2008). Axonal loss and myelin in early ON loss in postacute optic neuritis. Ann. Neurol. 64 (3) 325-331.

  • Naismith R. T. Tutlam N. T. Xu J. Shepherd J. B. Klawiter E. C. Song S. K. Cross A. H. (2009). Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 73 (1) 46-52.

  • Odom J. V. Bach M. Brigell M. Holder G. E. McCulloch D. L. Tormene A. P. Vaegan (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Doc. Ophthalmol. 120 (1) 111-119.

  • Parisi V. Manni G. Spadaro M. Colacino G. Restuccia R. Marchi S. Bucci M. G. Pierelli F. (1999). Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci. 40 (11) 2520-2527.

  • Petzold A. de Boer J. F. Schippling S. Vermersch P. Kardon R. Green A. Calabresi P. A. Polman C. (2010). Optical coherence tomography in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 9 (9) 921-932.

  • Pueyo V. Martin J. Fernandez J. Almarcegui C. Ara J. Egea C. Pablo L. Honrubia F. (2008). Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. Mult Scler. 14 (5) 609-614.

  • Quelly A. Cheng H. Laron M. Schiffman J. S. Tang R. A. (2010). Comparison of optical coherence tomography and scanning laser polarimetry measurements in patients with multiple sclerosis. Optom Vis. Sci. 87 (8) 576-584.

  • Seigo M. A. Sotirchos E. S. Newsome S. Babiarz A. Eckstein C. Ford E. Oakley J. D. Syc S. B. Frohman T. C. Ratchford J. N. Balcer L. J. Frohman E. M. Calabresi P. A. Saidha S. (2012). In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J. Neurol. 259 (10) 2119-2130.

  • Siffrin V. Vogt J. Radbruch H. Nitsch R. Zipp F. (2010). Multiple sclerosis: Candidate mechanisms underlying CNS atrophy. Trends Neurosci. 33 (4) 202-210.

  • Talman L. S. Bisker E. R. Sackel D. J. Long D. A. Jr. Galetta K. M. Ratchford J. N. Lile D. J. Farrell S. K. Loguidice M. J. Remington G. Conger A. Frohman T. C. Jacobs D. A. Markowitz C. E. Cutter G. R. Ying G. S. Dai Y. Maguire M. G. Galetta S. L. Frohman E. M. Calabresi P. A. Balcer L. J. (2010). Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann. Neurol. 67 (6) 749-760.

  • Trapp B. D. Peterson J. Ransohoff R. M. Rudick R. Mork S. Bo L. (1998). Axonal transection in the lesions of multiple sclerosis. New Engl. J.

  • Med. 338 (5) 278-285.

  • Trip S. A. Schlottmann P. G. Jones S. J. Altmann D. R. Garway-Heath D. F. Thompson A. J. Plant G. T. Miller D. H. (2005). Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann. Neurol. 58 (3) 383-391.

  • Voss E. Raab P. Trebst C. Stangel M. (2011). Clinical approach to optic neuritis: Pitfalls red flags and differential diagnosis. Ther. Adv. Neurol.

  • Disord. 4 (2) 123-134.

  • Walter S. D. Ishikawa H. Galetta K. M. Sakai R. E. Feller D. J. Henderson S. B. Wilson J. A. Maguire M. G. Galetta S. L. Frohman E. Calabresi P. A. Schuman J. S. Balcer L. J. (2012). Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 119 (6) 1250-1257.

  • Zaveri M. S. Conger A. Salter A. Frohman T. C. Galetta S. L. Markowitz C. E. Jacobs D. A. Cutter G. R. Ying G. S. Maguire M. G. Calabresi P. A. Balcer L. J. Frohman E. M. (2008). Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Arch. Neurol. 65 (7) 924-928.

  • Zipp F. Aktas O. (2006). The brain as a target of inflammation: Common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29 (9) 518-527.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 77 2
PDF Downloads 86 59 0