Impact Of Pine (Pinus sylvestris L.) And Spruce (Picea abies (L.) Karst.) Bark Extracts On Important Strawberry Pathogens

Sandra Minova 1 , Rita Sešķēna 1 , Santa Voitkāne 1 , Zane Metla 1 , Māris Daugavietis 2 , and Līga Jankevica 1
  • 1 Institute of Biology of University of Latvia, Miera iela 3, Salaspils, LV-2169, LATVIA
  • 2 Latvian Forest Research Institute “Silava”, Rīgas iela 111, Salaspils, LV-2169, LATVIA


Phytopathogenic fungi induced considerable economic losses in strawberry production industry; therefore, more attention should be paid to development and implementation of preventative treatment that is environmentally friendly. Coniferous trees produce a wide variety of compounds, such as terpenoids and phenolics. Several studies are known on fungicidal activity of different components of coniferous tree bark. The aim of this study was to evaluate in vitro pine (Pinus sylvestris L.) and spruce (Picea abies (L.) Karst.) bark ethanol extracts impact on pathogenous fungi causing diseases of strawberries. Products of processed pine (Pinus sylvestris) and spruce (Picea abies) bark were tested. During 2011 to 2013, several in vitro experiments were carried out to test the effectiveness of pine and spruce bark extracts against various phytopathogenic fungi isolated from strawberries: Botrytis cinerea, Colletotrichum acutatum, Phytophthora cactorum and Mycosphaerella fragariae. Radial growth tests showed that coniferous bark extracts inhibit mycelial growth of B. cinerea, C. acutatum, P. cactorum and M. fragariae. Extracts had the highest antifungal effect on B. cinerea two and five days after inoculation (p < 0.05). Bark extracts can reduce the sporulation of B. cinerea, C. acutatum and P. cactorum.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Albouvette, C., Olivain, C., Steinberg, C. (2006). Biological control of plant diseases: The European situation. Eur. J. Plant. Pathol., 114, 329–341.

  • Alfredsen, G., Solheim, H., Slimestad, R. (2008). Antifungal effect of bark extracts from some European tree species. Eur. J. Forest Res., 127, 387–393.

  • Dahlberg, R. K., Van Etten, L. J. (1982). Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopahtol., 20, 281–301.

  • De los Santos, B., Barrau, C., Romeo, F. (2003). Strawberry fungal diseases. J. Food Agr. Environ., 1 (3–4), 129–132.

  • Deba, F., Xuan, T. D., Yasuda, M., Tawata, S. (2008). Chemical composition and antioxidant, antimicrobial and antifungal activities of the essential oils from Bidens pilosa Linn. var Radiata. Food Control, 19, 346–352.

  • Fernández-Acero, F. J., Carbś, M., Garrido, C., Vallejo, I., Cantoral, J. M. (2007). Proteomic advances in phytopathogenic fungi. Curr. Proteomics, 4, 79–88

  • Gottstein, D., Gross, D. (1992). Phytoalexins of woody plants. Trees, 6, 55–68.

  • Hong, E. J., Na, K. J., Choi, I. G., Choi, K. C., Jeung, E. B. (2004). Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull., 27 (6), 864–866.

  • Klavina, D., Kiesnere, R. D., Korica, A. M., Arhipova, M, Daugavietis, M., Gaitnieks, T. (2012). Skuju koku mizas ekstraktu ietekmes uz Lophodermium seditiosum micēlija attīstību in vitro novērtējums [Evaluation of impact of pine bark extracts on mycelial growth of Lophodermium seditiosum in vitro]. Mežzinātne, 26 (59), 167–181 (in Latvian).

  • Koul, O., Walia, S., Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides Int., 4 (1), 63–84.

  • Krauze-Baranowska, M., Mardarowicz, M., Wiwart, M., Poblocka, L., Dynowska, M. (2002). Antifungal activity of the essential oils from some species of the genus Pinus. Z. Naturforsch., 57 (c), 478–482.

  • Laugale, V., Daugavietis, M. (2009). Effect of coniferous needle products on strawberry plant development, productivity and spreading of pests and diseases. Acta Hort., 842, 239–242.

  • Ludley, K. E., Robinson, C. H., Jickells, S., Chamberlain, P. M., Whitaker, J. (2008). Differential response of ectomycorrhizal and saprotrophic fungal mycelium from coniferous forest soils to selected monoterpenes. Soil Biol. Biochem., 40 (3), 669–678.

  • Mechnikova, G. Ya. Stepanova, T. A., Zaguzova, E. V. (2007) Quantitative determination of total phenols in strawberry leaves. Pharm. Chem. J., 41 (2), 97–100.

  • Miclea, R., Puia, C. (2010). In vitro control of the fungus Botrytis cinerea Pers. with plant extracts. Bull. Univ. Agr. Sci. Vet. Med. Cluj-Napoca Agr., 67 (1), 181–186.

  • Motiejunaite, O., Peciulyte, D. (2004). Fungicidal properties of Pinus sylvestris L. for improvement of air quality. Medicina (Kaunas), 40 (8), 287–794.

  • Ngo, T. T. Z., Zhohova, E. V. (2007). Development of an integrated methodology to determine the total flavonoid content in the common motherwort spectrophotometrically [Нго Т. Т. З., Жохова Е. В. Рaзработка методики комплексного определeния суммарного содержания флавоноидов в траве пустырника спектрофотометрическим методом]. Himija Rastitel’nogo Syr’ja [Химия растительного сыръя], 4, 73–77 (in Russian).

  • Ojala, T., Remes, S., Haansuu, P., Vuorela, H., Hiltunen, R., Haahtela, K., Vuorela, P. (2000). Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol., 73, 299–305.

  • Pan, H., Lundgren, L. N. (1995). Phenolic extractives from root bark of Picea abies. Phytochemistry, 39, 1423–1428.

  • Pandey, D. K., Tripathi, N. N., Tripathi, R. D., Dixit, S. N. Z. (1982). Fungitoxic and phytotoxic properties of essential oil of Hyptis suaveolens. Pfl. Krankh Pfl. Schutz, 89, 344–349.

  • Pasqualini, V., Robles, C., Garzino, S., Greff, S., Bpousquet-Melou, A., Bonin, G. (2003). Phenolic compounds content in Pinus halepensis Mill. needles: A bioindicator of air pollution. Chemosphere, 52, 239–248.

  • Paulus, O., A. (1990). Fungal diseases of strawberry. HortScience, 25 (8), 885–888.

  • Rosslenbroich, H. J., Stubler, D. (2000). Botrytis cinerea – history of chemical control and novel fungicides for its management. Crop Prot., 19, 557–561.

  • Russel, P. E. (1995). Fungicide resistance: Occurrence and management. J. Agr. Sci., 124 (3), 317–323.

  • Survilienė, E., Valiuškaitė, A., Snieškienė, V., Stankevičienė, A. (2009). Effect of essential oils on fungi isolated from apples and vegetables. Sodininkystė ir Daržininkystė, 28 (3), 227–234.

  • Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J. A. L. (2007). Botrytis cinerea: The cause agent of grey mold disease. Mol. Plant Path., 8 (5), 561–580.

  • Vio-Michaelis, S., Apablaza-Hidalgo, G., Gomez, M., Pena-Vera, R., Montenegro, G. (2012). Antifungal activity of tree Chilean plant extracts on Botrytis cinerea. Bot. Sci., 90 (2), 179–183.

  • Verovkins, A., Neiberte, B., Šāble, I., Zaķis, Ģ., Šuļga, G. (2008). Latvijas raksturīgāko koku sugu mizas ķīmiskais komponentsastāvs [Chemical composition of Latvian wood species bark]. Latvijas Ķīmijas Žurnāls, 2, 195–201 (in Latvian).

  • Zambonelli, A., Zechini d’Aulerio, A., Bianchi, A., Albasini, A. (1996). Effects of essential oil on phytopathogenic fungi. Phytopathology, 144, 491–494.

  • Zarins, I., Daugavietis, M., Halimona, J. (2009). Biological activity of plant extracts and their application as ecologically harmless biopesticide. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkystė ir daržininkystė, 28 (3), 269–280.

  • Yermakov A. E. (1987). Methods for Biochemical Investigation of Plants [Ермаков, A. E. Методы биохимического исследования растений]. Leningrad: Agropromizdat. 429 pp. (in Russian).


Journal + Issues