Investigation of the oil and Meal of Japanese Quince (Chaenomeles Japonica) Seeds

Open access


Various extracts of Japanese quince (Chaenomeles japonica) seeds obtained using organic solvents were studied for their polyphenol content and antiradical activity. It was established that petroleum ether, hexane, ethyl acetate, acetone, as well as toluene and chloroform extracts, in comparison to synthetic antioxidant butylated hydroxytoluene (BHT), demonstrate better (or comparable) activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Methods for detoxification of seeds, meals and press-cakes are proposed. Phenolic composition of different extracts (80% ethanol, 70% acetone), both acid and alkali hydrolysates of seeds, as well as seed oil methanol/water extract were analysed by means of high performance liquid chromatography (HPLC): chlorogenic acid was found for the first time in seed extract; protocatechuic acid predominated in all extracts. The content of other major phenolic acids was detected; it was found that seed oil contains syringic acid. It was determined that Japanese quince seeds contain almost ten times more α -tocopherol than barley grain. Due to the presence of α -tocopherol and phenolic compounds, seed oil and lipophilic extracts of seeds could serve as antioxidants.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ballhorn D. J. (2011). Cyanogenic glycosides in nuts and seeds. In: Preedy V. R. Watson R. R. Patel V. B. (eds.). Nuts and Seeds in Health and DiseasePrevention (1st edn.) (pp. 129-136). London Burlington San Diego: Academic Press.

  • Barceloux D. G. (2009). Cyanogenic foods (cassava fruit kernels and cycad seeds). Dis.-a-Mon. 55 (6) 336-352.

  • Deineka V. I. Deineka L. A. (2004). Type composition of triglycerides from seed oils. II. Triglycerides from certain cultivated plants of the Rosaceae family. Chem. Nat. Comp.40 (4) 293-294.

  • Fend D. Shen Y. Chavez E. R. (2003). Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed. J. Sci. FoodAgric.83 (8) 836-841.

  • Fromm M. Bayha S. Carle R. Kammerer D. R. (2012). Characterization and quantitation of low and high molecular weight phenolic compounds in apples. J. Agric. Food Chem.60 (5) 1232-1242.

  • Gora J. Kurowska A. (1979). Chemical composition of the seed oil from Japanese quince Chaenomeles Japonica. Herba Pol.25 53-56.

  • Granados M. V. Vila R. Laencina J. Rumpunen K. Ros J. M. (2003). Characteristics and composition of Chaenomeles seed oil. In: Rumpunen K. (Ed.). Japanese Quince - Potential Fruit Crop for Northern Europe (pp. 141-147). Alnarp: Balsgård-Department of Crop ScienceSwedish University of Agricultural Sciences.

  • Hellin P. Jordan M. J. Vila R. Gustafsson M. Göransson E. Åkesson B. Gröön I. Laencina J. Ros J. M. (2003). Processing and products of Japanese quince (Chaenomeles japonica) fruits. In: Rumpunen K. (Ed.). Japanese Quince - Potential Fruit Crop for Northern Europe (pp.169-175). Alnarp: Balsgård-Department of Crop ScienceSwedish University of Agricultural Sciences.

  • Ismail M. Mariod A. Bagalkotkar G. Ling H. S. (2010). Fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe extracted by supercritical fluid extraction. Grasas Aceites61(1) 37-44.

  • Jordan M. J. Vila R. Hellin P. Laencina J. Rumpunen K. Ros J. M. (2003). Volatile compounds associated with the fragrance and flavour of Chaenomeles juice. In: Rumpunen K. (Ed.). Japanese Quince-PotentialFruit Crop for Northern Europe (pp. 149-157). Alnarp: Balsgård-Department of Crop ScienceSwedish University of Agricultural Sciences.

  • Maria L. S. de Mello Bora P. S. Narain N. (2001). Fatty and amino acids composition of melon (Cucumis melo var. saccharinus) seeds. J. FoodComp. Anal.14 (1) 69-74.

  • Michotte D. Rogez H. Chirinos R. Mignolet E. Campos D. Larondelle Y. (2011). Linseed oil stabilization with pure natural phenolic compounds. Food Chem.129 (3) 1228-1231.

  • Mierina I. Jure M. (2010). Antioksidantu aktivitâtes noteikðanas metodes [Methods of assessment of antioxidant activity]. Latvijas Íîmijas Þurnâls49 (2/4) 221-234 (in Latvian).

  • Mierina I. Serzane R. Strele M. Moskaluka J. Seglina D. Jure M. (2011). Extracts of Japanese quince seeds - potential source of antioxidants. In Conference Proceedings of 6th Baltic Conference on Food Scienceand Technology: Innovations for Food Science and Production (pp. 98-103). Jelgava Latvia: Latvia University of Agriculture.

  • Moreau R. A. Wayns K. E. Flores R. A. Hicks K. B. (2007). Tocopherols and tocotrienols in barley oil prepared from germ and other fractions from scarification and sieving of hulless barley. Cereal Chem. 84 (6) 587-592.

  • Mukhamedova Kh. S. Akbarov R. R. Akramov S. T. (1979). Amounts of phospholipids and phytin in the seeds of various plants II. Chem. Nat. Comp.13 (4) 422-424.

  • Nogala-Kalucka M. Rudzinska M. Zadernowski R. Siger A. Krzyzostaniak I. (2010). Phytochemical content and antioxidant properties of seeds of unconventional oil plants. J. Amer. Oil Chem. Soc. 87 (12) 1481-1487.

  • Omar K. A. Shan L. Wang Y. L. Wang X. (2010). Stabilizing flaxseed oil with individual antioxidants and their mixtures. Eur. J. Lipid Sci. Technol.112 (9) 1003-1011.

  • Panfili G. Fratianni A. Di Criscio T. Marconi E. (2008). Tocol and -glucan levels in barley varieties and in pearling by-products. FoodChem. 107 (1) 84-91.

  • Poiana M. A. (2012). Enhancing oxidative stability of sunflower oil during convective and microwave heating using grape seed extract. Int. J. Mol. Sci.13 9240-9259.

  • Poiss G. (2004). Vairâkkomponentu augu eïïu raþoðana ar aukstâs izspieðanas paòçmienu [Production of multi-component vegetable oils using cold pressing method]. LV Patent No. 13200. Riga: Patent Office of the Republic of Latvia. (in Latvian).

  • Rubilar M. Morales E. Sáez R. Acevedo F. Palma B. Villarroel M. Shene C. (2012). Polyphenolic fractions improve the oxidative stability of microencapsulated linseed oil. Eur. J. Lipid Sci. Technol.114 (7) 760-771.

  • Ruisa S. (1996). Investigations on organic acid content in fruits processing products and seed oil content of Chaenomeles japonica. In: Collection ofscientific articles: Problems of Fruit Plant Breeding. Vol. 1 (pp. 24-31). Jelgava: LLU 1996.

  • Seglina D. (2001). Processing of Chaenomeles japonica. In: Reports of theScientific Practical Conference: Future Trends in Food and Nutrition Development (pp. 88-90). Jelgava Latvia: Latvia University of Agriculture University of Latvia.

  • Singleton V. L. Orthofer R. M. Lamuela-Raventos R. M. (1999). Analysis of total phenols and other oxidant substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299 152-178.

  • Sokolowska-Wozniak A. Szewczyk K. Nowak R. (2002). Phenolic acids from Cydonia japonica Pers. Herba Polonica48 (4) 214-218.

  • Tian H. L. Zhan P. Li K. X. (2010). Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds. Int. J. FoodSci. Nutr.61 (4) 395-403.

  • Yanishlieva N. V. Marinova E. M. (2001). Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol.103 (11) 752-767.

  • Дейнека В. И. Григрев А. М. Дейнека Л. А. Ермаков А. М. Сиротин А. А. Староверов В. М. (2005). Анализ компонентного состава антоцианов плодов и жирных кислот масел семян некоторых видов семейства Кохасеае методом высокоэффективной жидкостной хроматографии [Сошропепі сотрозіііоп апаіувів оі* Ггиіі апіЬосуапіпя

  • апсі неесі Ігі§1усегіс1е$ оГ $оте Козасеае $ресіе8 Ьу НРЬС теіЬосІ].

  • Растительные ресурсы 41 (1) 91-98 (іп Киззіап).

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 130 4
PDF Downloads 158 79 6