Grain quality traits important in feed barley

Open access

Grain quality traits important in feed barley

Spring barley (Hordeum vulgare L.) traditionally has been a major cereal crop for animal feed especially in Northern areas and also in Latvia. It is complicated to define what the ideal feed barley should be, as the requirements widely differ not only for different species, but even for different age groups of the same species of animals. Therefore, the breeding of feed barley has been developing very slowly and building on the basis of agronomic and beer barley quality parameters. Targeted breeding of barley varieties for a definite application purpose of the grain is connected with selection according to different criteria. The present article shows that the feed quality of barley is influenced both by physical grain quality indicators (colour, grain weight and size, hull content, 1000 grain weight, volume weight and grain hardness) and by the chemical composition (carbohydrates, non-starch polysaccharides, amino acids, fibre, protein, fat, minerals and vitamins). On the basis of the information collected, a profile of a high quality feed barley variety for different groups of animals is defined.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aman P. Hesselman K. Tilly A.C. (1985). The variation in chemical composition of Swedish barleys. J. Cereal Sci.3 73-77.

  • Aman P. Newman C.W. (1986). Chemical composition of some different types of barley grown in Montana USA. J. Cereal Sci.4 133-141.

  • Andersson A.A.M. Andersson R. Autio K. Aman P. (1999a). Chemical composition and microstructure of two naked waxy barleys. J. Cereal Sci.30 183-191.

  • Andersson A.A.M. Elferson C. Andersson R. Regner S. Aman P. (1999b). Chemical and physical characteristics of different barley samples. J. Sci. Food Agr.79 979-986.

  • Anonymous (2012). Barley Export and Market Forecasts 2012. See: http://www.reportlinker.com/report/search/theme/barley_export

  • Ao Z. Jane J. (2007). Characterisation and modeling of the A- and B-granule starches of wheat triticale and barley. Carbonhydrate Polymers67 46-55.

  • Arganosa G.C. Rossnagel B.G. Legge B.G. Zatorski T. Tucker J. (2003). Prediction of Deoxynivalenol (DON) in Feed Barley using Near-Infrared Spectroscopy. In: 3rd Canadian Barley Symposium (19-20 June 2003) pp. 96. Red Deer Alberta.

  • Bacic A. Stone B.A. (1981). Chemistry and organization of aleirone cell wall components from wheat and barley. Austral. J. Plant Physiol.8 475-495.

  • Barneveld S.L. (1999). Chemical and physical characteristics of grains related to variability in energy and amino acid availability in ruminants: A review. Austral. J. Agr. Res.50 651-666.

  • Beecher B. Bowman J. Martin J.M. Bettge A.D. Morris C.F. Blake T.K. Giroux M.J. (2002). Hordoindolines are associated with a major endosperm-texture QTL in Barley (Hordeum vulgare L.). Genome45 584-591.

  • Bell J.M. Shires A. Keith M.O. (1983). Effect of hull and protein content of barley on protein and energy digestibility and feeding value of pigs. Canad. J. Animal Sci.63 201.

  • Bhatty R.S. Christison G.I. Sosulski F.W. Harwey B.L. Hughes G.R. Berdahl J.D. (1974). Relationships various physical and chemical characters to digestable energy of wheat and barley cultivars. Can. J. Animal Sci.54 419-427.

  • Bhatty R.S. Christison G.I. (1975). Chemical composition and digestable energy of barley. Can. J. Animal Sci.55 759-764.

  • Bhatty R.S. (1986). The potential of hull-less barley-a review. Cereal Chem.63 97 - 103.

  • Bhatty R.S. (1987). Relationship between acid extract viscosity and total soluble and insoluble β-glucan content of hulled and hulless barley. Can. J. Plant Sci.67 997-1008.

  • Bowen D.E. Guttieri M.J. Peterson K. Peterson K. Raboy V. Souza E.J. (2006). Phosphorus fractions in developing seeds of four low phytate barley (Hordeum vulgare L.) genotypes. Crop Sci.46 2468-2473.

  • Bowman J.G.P. Blake T.K. Surber L.M.M. Habernicht D.K. Bockelman H. (2001). Feed-quality variation in barley core collection of the USDA National small grain collection. Crop Sci.41 863-870.

  • Camm J.P. Ellis R.P. Morrison W.R. (2005). Milling energy. An investigation into the biochemical basis of hardness in cereals. Aspects Appl. Biol.25 121-131.

  • Campbell G.L. Rossnagel B.G. Classen H.L. Thacker P.A. (1989). Genotypic and environmental differences in extract viscosity of barley and their relationship to its nutritive value for broiler chickes. Animal Feed Sci. Technol.26 221-230.

  • Christison G.I. Bell J.M. (1975). An assesment of bulk weight and other simple criteria for predicting the digestable energy values of feed grains. Can. J. Plant Sci.55 515-528.

  • Dai F. Wang J. Zhang S. Xu Z. Zhang G. (2007). Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chem.105 606-611.

  • Darlington H.F. Tesci L. Harris N. Griggs D.L. Cantrell I.C. Shewry P.R. (2000). Starch granule associated proteins in barley and wheat. J. Cereal Sci.32 21-29.

  • Darroch C.S. Aherne F.X. Helm J. Sauer W.C. Jaikaran S. (1996). Effect of dietary level of barley hulls and fibre type on protein and energy digestibilities of Condor hulless barley in growing swine. Animal Feed Sci. Technol.61 173-182.

  • Degola L. Belicka I. (2005). Hulless-barley for nutrition of high breeding value pig. In: Proceedings of XI Baltic Animal Breeding and Genetics Conference May 2005 Palanga Lithuania pp. 202-206.

  • Doll H. (1973). Inheritance of high lysin character of a barley mutant. Hereditas74 293-294.

  • Edney M.J. (1996). Barley. In: Cereal Grain Quality (pp. 113-146). Henry R.J. Kettlewell P.S. (eds.). Cambridge: Chapman and Hall The University Press.

  • Eggum B.O. Braunsgaard G. Jensen J. (1995). The nutritive value of new high-lysine barley mutants. J. Cereal Sci.22 171-176.

  • Elfverson C. Andersson A.A. Aman P. Regner S. (1999). Chemical composition of barley cultivars fractionated by weighing pneumatic classification sieving and sorting on a specific gravity tabele. Cereal Chem.76(3) 434-438.

  • Engstrom D.F. Mathison G.W. Goonewardene L.A. (1992). Effect of beta-glucan starch and fibre content and steam vs. dry rolling of barley grain on its degradability and utilisation by steers. Animal Feed Sci. Technol.37 33-46.

  • Evers A.D. Blakeney A.B. Brien L.O. (1999). Cereal structure and composition. Austral. J. Agr. Res.50 629-650.

  • Fairbairn S.L. Patience J.F. Classen H.L. Zijlstra R.T. (1999). The energy content of barley fed to growing pigs: Charcterizing the nature of its variability and developing prediction equitions for its estimation. J. Animal Sci.77 1502-1512.

  • Fastnaught C.F. Berglund P.T. Holm E.T. Fox G.J. (1996). Genetic and environmental variation in β-glucan content and quality parameters of barley for food. Crop Sci.36 941-946.

  • Fox G.P. Kelly A. Poulsen D. Inkerman A. Henry R. (2006). Selecting for increased barley grain size. J. Cereal Sci.43 198-208.

  • Fox G.P. Nguyen L. Bowman J. Poulsen D. Inkerman A. Henry R. (2007). Relationships between hardness genes and quality in barley (Hordeum vulgare L.). J. Inst. Brew.113 (1) 87-95.

  • Fregeau-Reid J. Thin-Meiw C. Ho K. Martin R.A. Konishi T. (2001). Comparison of two-row and six-row barley for chemical composition using doubled-haploid lines. Crop Sci.41 1737-1743.

  • Gabert V.M. Jorgensen H. Brunsgaard G. Eggum B.O. Jensen J. (1996). The nutritional value of new high-lysine barley varieties determined with rat and young pigs. Can. J. Animal Sci.76 443-450.

  • Gaines C.S. Finney P.F. Fleege L.M. Andrews L.C. (1996). Predicting a hardness measurements using the Single Kernel Characterisation System. Cereal Chem.73 278-283.

  • Grausgruber H. Schoenlechner R. Zahlner V. Berghofer E. Ruckenbauer P. (2004). Beta-glucan content of old and modern spring barleys In: 9th International Barley Genetic Symposium Brno Czech Republic 20-26 June (pp. 442-448). Brno.

  • Greenwell P. Schofield J.D. (1986). A starch granule protein associated with endosperm softness in wheat. Cereal Chem.63 379-380.

  • Helm J.H. Metzer R.J. Kronstad W.E. (1974). Inheritance of high lysine in Hiproly barley and its association with the Hiproly endosperm gene. Crop Sci.14 637-640.

  • Henry R.J. Cowe I. (1990). Factors influencing the hardness (milling energy) and malting quality of barley. J. Inst. Brew.96 135-136.

  • Hogan J.P. Flinn P.C. (1999). An assessment by in vivo methods of grain quality for ruminants. Austral. J. Agr. Res.50 843-854.

  • Holopainen U.P. Wilhelmson A. Salmenkallio-Marttila M. Peltonen-Sainio P. Reinikainen P. Kotaviita E. Simolin H. Home S. (2005). Endosperm effects the malting quality of barley (Hordeum vulgare L.). J. Agr. Food Chem.53 7279-7287.

  • Hunt C.W. (1996). Factors affecting the feeding quality of barley for ruminats. Animal Feed Sci. Technol.62 37-48.

  • Huntington G.B. (1997). Starch utilization by ruminats: From basics to the bunk. J. Animal Sci.75 852-867.

  • Izydorczyk M.S. Storslay J. Labossiere D. MacGregor A.W. Rossnagel B.G. (2000). Variation in total and solube β-glucan content in hulless barley: Effects of thermal physical and enzimatic treatments. J. Agr. Food Chem.48 982-989. Jagtab S.S. Beardsley A. Forrest J. Ellis (1993). Protein composition and grain quality in barley. Aspects Appl. Biol.36 51-59.

  • Kang M.Y. Sugimoto Y. Kato I. Sakamoto S. Fuwa H. (1985). Some properties of large and small starch granules of barley (Hordeum vulgare L.) endosperm. Agr. Biol. Chem.49 1291-1297.

  • Kies A.K. Van Hemert K.H.F. Sauer W.C. (2001). Effect of phytase on protein and amino acid digestibility and energy utilization. World's Poultry Sci. J.57 109-126.

  • Klemsdal S.S. Olsen O.A. Rorvik K.A. (1987). The barley high lysine genes of mutants 1508 and 527 alter hordein polypeptide composition quantitatively but not qualitatively. Hereditas107(1) 107-114.

  • Klopfenstein C.F. (1988). The role of cereal beta-glucans in nutrition and health. Cereal Foods World33 865-869.

  • Lange M. Vincze E. Wieser E. Holm H. (2006). Developing a feed barley with improved amino acid composition to meet environmental and nutritional demands. In: Proceedings of Eucarpia Conference. Cereal Science and technology for feeding ten billion people: Genomics era and beyond 13-17 November 2006 Lleida Spain (pp. 305-308).

  • Legzdina L. Buerstmayr H. (2004). Comparison of infection with Fusarium head blight and acumulation of micotoxins in grain of hulless and covered barley. J. Cereal Sci.40(1) 61-67.

  • Li J.H. Vasanthan T. Rossnagel B. Hoover R. (2001). Starch from hull-less barley: I Granule morphology composition and amylopectin structure. Food Chem.74 395-405.

  • Linares L.B. Broomhead J.N. Guaiume E.A. Ledoux D.R. T. L. Veum T.L. Raboy V. (2007). Effects of low phytate barley (Hordeum vulgare L.) on zinc utilization in young broiler chicks. Poultry Sci.86 299-308.

  • Manner D.J. (1985). Some aspects of the structure of starch. Cereal Food World30 461-467.

  • Mauro D.J. (1996). An update on Starch. Cereal Food World41 776-780.

  • McNab J.M. Smithard R.R. (1992). Barley β-glucan: An antinutritional factor in poultry feeding. Nutr. Res. Rev.5 45-60.

  • Molina-Cano J.L. Voltas J. Irta U. de L. (1996). β-glucan and hordein contents of developing grain in Spain and Scotland. In: Proceedings of V International Oat conference & VII Barley genetic Symposium 30 July - 6 August 1993 Saskatoon (pp. 132-133). Saskatoon.

  • Molina-Cano J.K. Swanston J.S. Ulrich S.E. (2000). Genetic and environmental effects on malting and feed quality of barley: A dynamic field of study. In: 8th International Barley Genetics Symposium Barley Genetics VIII.22-27 October 2000 Adelaide (pp. 127-134). Adelaide.

  • Morrison W.R. Scott D.C. Karkalas J. (1986). Variation in the composition and physical properties of barley starch. Starke38(11) 374-379.

  • Morrison W.R. (1995). Starch lipids and how they relate to starch granules structure and functionality. Cereal Food World40 437-446.

  • Munk L. Karlson K.E. Hagberg A. Eggum B.O. (1970). Gene for improved nutritional value in barley seed protein. Science168 985-987.

  • Munk L. (1981). Barley for food feed and industry. In: Cereals.A Renewable Resource Theory and Practice (pp. 427-459). Pomeranz Y. Munk L. (eds.). St. Paul MN: American Association of Cereal Chemists.

  • Newman R.K. Newman C.W. Graham H. (1989). The hypocholesterolemic function of barley β-glukans. Cereal Food World. 34 883-886.

  • Newman C.W. Newman R.K. (1989). Nutritional aspects of barley as a livestock feed. In: Proceedings of the Prairie Barley Symposium.20-22 March 1989 Saskatoon (pp. 99-107). Saskatoon.

  • Newman C.W. Newman R.K. (1992a). Characteristics of the ideal barley for feed Barley research reviews 1986-91. In: Barley Genetics VI Session and Workshops Summaries II (pp. 925-939). Munksgaard International Publishers.

  • Newman C.W. Newman R.K. (1992b). Nutritional aspects of barley seed structure and composition. In: Barley: Genetics Biochemistry Molecular Biology and Biotechnology (pp. 351-368). Shewry P.R. (ed.). CAB International.

  • Olkku J. Kotaviita E. Salmenkallio-Martilla M. Sweins H. Holm S. (2005). Connection between structure and quality of barley husk. J. Amer. Soc. Brew. Chem.63 17-22.

  • Oscarsson M. Parkkoen T. Auto K. Aman P. (1997). Composition and microstructure of normal waxy and high-amylose barley samples. J. Cereal Sci.26 259-264.

  • Osītis U. (1998). Barības līdzeklu novertēšana atgremotāju ēdināšanā metodiskais materiāls [Evalution of feeding materials for ruminants].

  • Jelgava LLU. 48 lpp. (in Latvian). Pasarella V.S. Savin R. Slafer G.A. (2005). Breeding effects on sensitivity barley grain weight and quality to events of high temeprature during grain filling. Euphytica141 41-48.

  • Peltonen J. Rita H. Aikasalo R. Home S. (1994). Hordein and malting quality in northen barleys. Hereditas120 231-239.

  • Poulsen H.D. Johansen K.S. Hatzack F. Boisen S. Rasmussen S.K. (2001). Nutritional value of low-phytate barley evaluated in rats. Acta Agriculturae Scandinavica51(1) 53-58.

  • Pryma J. Ehrenbergerova J. Belcrediova N. Vaculova K. (2007). Tocol content in barley. Acta Chim. Slovenia54 102-105.

  • Raboy V. Cook A. Wesenberg D. Rossnagel G. (2000). Low phytate barleys. In: Proceedings of 8th Intrenational Barley Genetic Symposium. 22-27 October 2000 Adelaide Australia (pp. 147-153). Adelaide.

  • Rodomiro O. Nurminiemi M. Madsen S. Rognli O.A. Bjornstad A. (2002). Genetic gains of Nordic spring barley breeding over sixty years. Euphytica126 283-289.

  • Rossnagel B.G. (2000) Hulless barley—Western Canada corn. Proceedings of the 8th International Barley Genetics Symposium Vol. 1 (pp. 135-142). Adelaide.

  • Salomonsson A.C. Theander O. Aman P. (1980) Composition of normal and high-lysine barleys. Swedish J. Agr. Res.10 11- 16.

  • Selle P.H. Ravindran V. Caldwell R.A. Bryden W.L. (2000). Phytate and phytase: Consequences for protein utilization. Nutr. Res. Rev.13 255-278.

  • Shewry P.R. Morell M. (2001). Manipulating cereal endosperm structure development and composition to improve end-use properties. Adv. Bot. Res.34165-234.

  • Shewry P.R. Halford N.G. (2002). Cereal seed storage proteins: Structures properties and role in grain utilization. J. Exper. Bot.53. 947-958.

  • Shirley B.W. (1998). Flavonoids in seeds and grains: Physiological function agronomic importance and the genetics of biosynthesis. Seed Sci. Res.8 415-422.

  • Song Y. Jane J. (2000). Characterisation of barley starches of waxy normal and high amilose varieties. Carbohydr. Polym.41 365-377.

  • Stewart A. Nield H. Lott J.N.A. (1988). An investigation of the mineral content of barley grains and seedlings. Plant Physiol.89 93-97.

  • Svihus B. Gullord M. (2002). Effect of chemical content and physical characteristics on nutritional value of wheat barley and oat for poultry. Animal Feed Sci. Technol.102 (1-4) 71-92.

  • Svihus B. Uhlen A.K. Harstad O.M. (2005). Effect of starch granule structure associated components and processing on nutritive value of cereal starch: A review. Animal Feed Sci. Technol.122 303-320.

  • Swantston J.S. (1997). Waxy starch barley genotypes with reduced β-glucan content. Cereal Chem.74 452-455.

  • Turuspekov Y. Beecher B. Darlington Y. Bowman J. Blake T.K. Giroux M.J. (2008). Hardness locus sequence variation and endosperm texture in spring Barley. Crop Sci.48 1007-1019.

  • Ullrich S.E. Han F. Froseth J.A. Jones B.L. Newman C.W. Wesenberg D.M. (1996). Mapping of loci affect carbonhydrate content in barley grain. In: Proceedings of V International Oat Conference&VII Barley Genetic Symposium Saskatoon 30 July - 6 August 1993 (pp. 141-143). Saskatoon.

  • Vasanthan T. Bhatty R.S. (1996). Physicochemical prpoperties of smalland large-granule starches of waxy regular and high amilose barleys. Cereal Chem73 199-207.

  • Veum T.L. Ledoux D.R. Bollinger D.W. Raboi V. Cook A. (2002). Low phytic acid barley improves calcium and phosphorus utilisation and growth performance in growing pigs. J. Animal Sci.80 2663-2670.

  • Washington J.M. Box A. Karakousis A. Barr A.R. (2000). Developing Waxy Barley cultivars for food feed and malt. In: Proceedings of the 8th International Barley Genetic SymposiumBarley Genetics VIII Vol. II (pp. 303-306).

  • Welch R.W. (1978). Genotypic variation of oil and protein barley grain. J. Sci. Fod Agr.29 953-958.

  • Wrigley C.W. (1999). Potential methodologies and strategies for a rapid assessment of feed grain quality. Austral. J. Agr. Res.50 789-805.

  • Xue Q.L. Newman C.W. Graham H. (1997). Influence of the hulless waxy starch and short-awn genes on the composition of barleys. J. Cereal Sci.26 251-257.

  • Zhang W.J. Campbell L.D. Stothers S.C. (1994). An investigation of the feasibility of predicting nitrogen corrected true metabolizable energy (TMEn) content in barley from chemical composition and physical characteristics. Can. J. Animal Sci.74 355-359.

  • Zheng G.H. Rossnagel B.G. Tyler R.T. Bhatty R.S. (2000). Distribution of β-glucan in the grain of hull-less barley. Cereal Chem.77 140-144.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 380 173 6
PDF Downloads 185 92 3