Potential Impact of Climate Change on Aquatic Vegetation of River Salaca, Latvia

Potential Impact of Climate Change on Aquatic Vegetation of River Salaca, Latvia

Species diversity and cover of aquatic macrophytes were investigated in the River Salaca in 2007. In total 24 different taxa were found. Schoenoplectus lacustris was the dominant species, Sagittaria sagittifolia, Nuphar lutea, Nymphaea candida, Butomus umbellatus and different Potamogeton species were frequent. Cover of macrophytes varied in the river between 10-90%, maximum in-stream cover reached in rapidly flowing sites. Comparison of total cover of macrophytes in 1986 and 2002 surveys of several stretches was done. Causes for the changes are discussed. The increasing growth of aquatic vegetation in the River Salaca have been related to climatic factors—higher mean annual air temperatures, earlier springs and decrease in the period of ice cover in winter.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Sarbu, A., Janauer, G., Exler, N., Filzmoser, P. (2006). The aquatic vegetation of large Danube river branches in Romania. In Proceedings of the 36th International Conference of IAD, Austrian Committee DanubeResearch (pp. 101-106). Vienna.

  • Schneider, S., Melzer, A. (2003). The trophic index of macrophytes (TIM)—a new tool for indicating the trophic state of running waters. Int. Rev. Hydrobiol., 88, 49-67.

  • Scott, W. A., Adamson, J. K., Rollinson, J., Parr, T. W. (2002). Monitoring of aquatic macrophytes for detection of long-term change in river systems. Environ. Monitor. Assess., 73, 131-153.

  • Abou-Hamdan, H., Haury, J., Hebrard, J. P., Dandelot, S., Cazaubon, A. (2005). Macrophytic communities inhabiting the Huveaune (South-East France), a river subject to natural and anthropic disturbances. Hydrobiologia, 551, 161-170.

  • Burnett, D. A., Champion, P. D., Clayton, J. S., Ogden J. (2007). A system for investigation of the temperature responses of emergent aquatic plants. Aquatic Botany, 86(2), 187-190.

  • Chambers, P. A., Prepas, E. E., Hamilton, H. R., Bothwell, M. L. (1991). Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Applic., 1(3), 249-257.

  • Chambers, P. A., DeWreede, R. E., Irlandi, E. A., Vandermeulen, H. (1999). Management issues in aquatic macrophyte ecology: A Canadian perspective. Can. J. Bot. 77, 471-487.

  • Cimdiņš, P., Druvietis, I., Liepa, R., Parele, E., Urtāne, L., Urtāns, A. (1995). A Latvian catalogue of indicator species of freshwater saprobity. Proc. Latvian Acad. Sci., Section B, No. 1/2, 122-133.

  • Clarke, S. J., Wharton G. (2001). Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. Sci. Total Environ., 266, 103-112.

  • Druvietis, I., Briede, A., Grinberga, L., Parele, E., Rodinovs, V., Springe, G. (2007). Long-term assessment of hydroecosystem of the River Salaca, North Vidzeme Biosphere Reserve, Latvia. In Climate Change in Latvia. (pp. 173-192). Riga: University of Latvia.

  • Ellenberg, H., Weber, H. E., Düll, R. (1992). Zeigenwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1-258.

  • Georg, A., Janauer, Lanz, E., Filzmoser, P., Exler, N. (2006). Breg and Brigach, source streams of the Danube: Changes based on macrophyte surveys 1967, 1989, and 2004. Proceedings of the 36th International Conference of International Association for Danube Research, 7-8 September 2006. (pp. 86-90). Austrian Committee DanubeResearch. Vienna.

  • Hearne, J. W., Armitage, P. D. (1993). Implications of the annual macrophyte growth cycle on habitat in rivers. Regul. Rivers. Res. Man., 8, 313-322.

  • Jansons, V., Vagstad, N., Sudars, R., Deelstra, J., Dzalbe, I., Kirsteina, D. (2002). Nutrient losses from point and diffuse agricultural sources in Latvia. Landbauforschnung Volkenrode, 1(52), 9-17.

  • Kankaala, P., Ojala, A., Tulonen, T., Haapamaki, J., Arvola, L. (2000). Response of littoral vegetation on climate warming in the boreal zone: An experimental simulation. Aquatic Ecol., 34, 433-444.

  • Lacoul, P., Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev./Dossiers Environ. 14(2), 89-136.

  • Madsen, T. V., Brix, H. (1997). Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia. 110, 320-327.

  • McKee, J., Richards, A. J. (1996). Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol. 133, 233-243.

  • Melzer, A. (1999). Aquatic macrophytes as tools for lake management. Hydrobiologia, 395/396, 181-190.

  • Middlekoop, H. (2000). The impact of climate change on the River Rhine and the implications for water management in the Netherlands. Lelystad: Lelystad: RIZA (Institute for Inland Water Management and Waste Water Treatment). 156 pp.

  • Sand-Jensen, K. (1998). Influence of submerged macrophytes on sediment composition and near bed flow in lowland streams. Freshwater Biol., 39(4), 663-679.

  • Sand-Jensen, K., Pedersen, O. (1999). Velocity gradients and turbulence around macrophyte stands in streems. Freshwater Biol., 42(2), 315-328.

  • Vereecken, H., Baetens, J., Viaene, P., Mostaert, F., Meire, P. (2006). Ecological management of aquatic plants: Effects in lowland streams. Hydrobiologia, 570, 205-210.

  • Аноним (1975). Мемо∂uка uзученuя бuогеоценозов внумреннuх во∂оемв [Methods of investigation on inland waters] Москва: Наука, с. 17-132.

  • Уртанс, А. В. (1989). Структура и распределение высшей водной растителности в р. Салаца [Structure and distribution of aquatic plants in the River Salaca]. В книге: Бuоценоmuческая cmpykmypa малых рек. Бассеuн рекu Салаца. Рига, Зинатне, с. 163-182 (in Russian).


Journal + Issues