The Effect of Dialysis Modality and Membrane Performance on Native Immunity in Dialysis Patients

Open access

Abstract

Chronic Kidney Disease (CKD) is characterized by immune activation with development of chronic inflammation. However, immune deficiency also exists in CKD patients. The number and the activity of Natural Killer cells (NK-cells) are influenced by the biocompatibility of various dialysis membranes. In this study we investigated the effect of dialysis modality and membrane type on NK-cell number and on phagocytic activity of neutrophils in patients on different dialysis methods.

Sixty patients were included in the study and divided in three groups of 20 patients each. Patients on conventional hemodialysis using Low Flux membrane (cHD-LF) were included in Group I, patients on conventional dialysis using High Flux membrane (cHD-HF) were included in Group II and patients treated by on-line hemodiafiltration with High Flux polysulphone membrane (on-line HDF) were included in Group III. Native immunity was investigated using the number of NK-cells and the phagocytic activity of neutrophils.

NK-cells count was significantly lower (p<0.001) in the three groups of dialyzed patients in comparison to healthy subjects. However, no significant difference was observed in the NK-cells count among patients treated by conventional dialysis using Low or High Flux membrane and patients treated by on-line hemodiafiltration. Similarly, although the phagocytic activity of neutrophils was significantly decreased in all patients on dialysis (p<0.001), no difference related to the dialysis modality or membrane performance was observed. A strong positive correlation was recognized between parathormone blood levels and number of NK-cells (r=0.305, p<0.01).

In conclusion, an impairment of the native immunity represented by NK cell number and phagocytic activity of neutrophils is observed in patients on dialysis. Dialysis modality and membrane performance do not influence the native immunity of dialyzed patients. However, parathormone blood levels are possibly involved in the development of immune system disturbances in such patients.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Vaziri N. D.; Pahl M. V; Crum A.; Norris K. Effect of uremia on structure and function of immune system. J. Ren. Nutr. 2012; 22: 149–156 doi:10.1053/j.jrn.2011.10.020.

  • 2. Pahl M. V; Gollapudi S.; Sepassi L.; Gollapudi P.; Elahimehr R.; Vaziri N. D. Effect of end-stage renal disease on B-lymphocyte sub-populations IL-7 BAFF and BAFF receptor expression. Nephrol. Dial. Transplant 2010; 25: 205–212 doi:10.1093/ndt/gfp397.

  • 3. Knerr K.; Futh R.; Hemsen P.; Mohne W.; Heinig A.; Kleophas W.; Scherbaum W. A.; Martin S. Chronic inflammation and hemodialysis reduce immune competence of peripheral blood leukocytes in end-stage renal failure patients. Cytokine 2005; 30: 132–138 doi:10.1016/j.cyto.2004.12.011.

  • 4. Kay N. E. Natural killer cells. Crit. Rev. Clin. Lab. Sci. 1986; 22: 343–359.

  • 5. Bender B. S.; Curtis J. L.; Nagel J. E.; Chrest F. J.; Kraus E. S.; Briefel G. R.; Adler W. H. Analysis of immune status of hemodialyzed adults: association with prior transfusions. Kidney Int. 1984; 26: 436–443.

  • 6. Raij L.; Kay N. E. Effect of hemodialysis membranes on human lymphocyte natural killer function. Contrib. Nephrol. 1987; 59: 17–25.

  • 7. Kay N. E.; Raij L. Differential effect of hemodialysis membranes on human lymphocyte natural killer function. Artif. Organs 1987; 11: 165–167.

  • 8. Cala S.; Mazuran R.; Kordic D. Negative effect of uraemia and cuprophane haemodialysis on natural killer cells. Nephrol. Dial. Transplant 1990; 5: 437–440.

  • 9. Zaoui P.; Hakim R. M. Natural killer-cell function in hemodialysis patients: effect of the dialysis membrane. Kidney Int. 1993; 43: 1298–1305.

  • 10. Gascon A.; Orfao A.; Lerma J. L.; Ciudad J.; Lopez A.; Hernandez M. D.; Tabernero J. M. Antigen phenotype and cytotoxic activity of natural killer cells in hemodialysis patients. Am. J. Kidney Dis. 1996; 27: 373–379.

  • 11. Vacher-Coponat H.; Brunet C.; Lyonnet L.; Bonnet E.; Loundou A.; Sampol J.; Moal V.; Dussol B.; Brunet P.; Berland Y.; Dignat-George F.; Paul P. Natural killer cell alterations correlate with loss of renal function and dialysis duration in uraemic patients. Nephrol. Dial. Transplant 2008; 23: 1406-1414 doi:10.1093/ndt/gfm596.

  • 12. Griveas I.; Visvardis G.; Fleva A.; Papadopoulou D.; Mitsopoulos E.; Kyriklidou P.; Manou E.; Ginikopoulou E.; Meimaridou D.; Paulitou A.; Sakellariou G. Comparative analysis of immunophenotypic abnormalities in cellular immunity of uremic patients undergoing either hemodialysis or continuous ambulatory peritoneal dialysis. Ren. Fail. 2005; 27: 279–282.

  • 13. Degiannis D.; Czarnecki M.; Donati D.; Homer L.; Eisinger R. P.; Raska K. J.; Raskova J. Normal T lymphocyte function in patients with end-stage renal disease hemodialyzed with “high-flux” polysulfone membranes. Am. J. Nephrol. 1990; 10: 276–282 doi:10.1159/000168120.

  • 14. Canaud B.; Chenine L.; Henriet D.; Leray H. Online hemodiafiltration: a multipurpose therapy for improving quality of renal replacement therapy. Contrib. Nephrol. 2008; 161: 191–198 doi:10.1159/000130677.

  • 15. Daugirdas J. T.; Depner T. A.; Gotch F. A.; Greene T.; Keshaviah P.; Levin N. W.; Schulman G. Comparison of methods to predict equilibrated Kt/V in the HEMO Pilot Study. Kidney Int. 1997; 52: 1395–1405.

  • 16. Deenitchina S. S.; Ando T.; Okuda S.; Kinukawa N.; Hirakata H.; Nagashima A.; Fujishima M. Cellular immunity in hemodialysis patients: a quantitative analysis of immune cell subsets by flow cytometry. Am. J. Nephrol. 1995; 15: 57–65 doi:10.1159/000168802.

  • 17. Peraldi M.-N.; Berrou J.; Metivier F.; Toubert A. Natural killer cell dysfunction in uremia: the role of oxidative stress and the effects of dialysis. Blood Purif. 2013 35 Suppl 2 14–19 doi:10.1159/000350839.

  • 18. Renaux J. L.; Thomas M.; Crost T.; Loughraieb N.; Vantard G. Activation of the kallikrein-kinin system in hemodialysis: role of membrane electronegativity blood dilution and pH. Kidney Int. 1999; 55: 1097–1103 doi:10.1046/j.1523-1755.1999.0550031097.x.

  • 19. Alexiewicz J. M.; Smogorzewski M.; Fadda G. Z.; Massry S. G. Impaired phagocytosis in dialysis patients: studies on mechanisms. Am. J. Nephrol. 1991; 11: 102–111 doi:10.1159/000168284.

  • 20. Ballen K. K.; Shpall E. J.; Avigan D.; Yeap B. Y.; Fisher D. C.; McDermott K.; Dey B. R.; Attar E.; McAfee S.; Konopleva M.; Antin J. H.; Spitzer T. R. Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol. Blood Marrow Transplant. 2007; 13: 838-843 doi:10.1016/j.bbmt.2007.03.007.

  • 21. Yamamoto I.; Potts Jr J. T.; Segre G. V Circulating bovine lymphocytes contain receptors for parathyroid hormone. J. Clin. Invest. 1983; 71: 404-407 doi:10.1172/JCI110784.

  • 22. Klinger M.; Alexiewicz J. M.; Linker-Israeli M.; Pitts T. O.; Gaciong Z.; Fadda G. Z.; Massry S. G. Effect of parathyroid hormone on human T cell activation. Kidney Int. 1990; 37: 1543–1551.

  • 23. Geara A. S.; Castellanos M. R.; Bassil C.; Schuller-Levis G.; Park E.; Smith M.; Goldman M.; Elsayegh S. Effects of parathyroid hormone on immune function. Clin. Dev. Immunol. 2010 2010 doi:10.1155/2010/418695.

  • 24. Ozdemir F. N.; Yakupoglu U.; Turan M.; Arat Z.; Karakayali H.; Erdal R.; Turan M. Role of parathormone levels on T-cell response in hemodialysis patients. Transplant. Proc. 2002; 34: 2044–2045.

  • 25. Angelini D.; Carlini A.; Giusti R.; Grassi R.; Mei E.; Fiorini I.; Mazzotta L.; Antonelli A. Parathyroid hormone and T-cellular immunity in uremic patients in replacement dialytic therapy. Artif. Organs 1993; 17: 73–75.

Search
Journal information
Impact Factor


CiteScore 2017: 0.45

SCImago Journal Rank (SJR) 2018: 0.177

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 19
PDF Downloads 50 50 10