Ultrametric Distance in Syntax

Open access

Abstract

Phrase structure trees have a hierarchical structure. In many subjects, most notably in taxonomy such tree structures have been studied using ultrametrics. Here syntactical hierarchical phrase trees are subject to a similar analysis, which is much simpler as the branching structure is more readily discernible and switched. The ambiguity of which branching height to choose, is resolved by postulating that branching occurs at the lowest height available. An ultrametric produces a measure of the complexity of sentences: presumably the complexity of sentences increases as a language is acquired so that this can be tested. All ultrametric triangles are equilateral or isosceles. Here it is shown that X̅ structure implies that there are no equilateral triangles. Restricting attention to simple syntax a minimum ultrametric distance between lexical categories is calculated. A matrix constructed from this ultrametric distance is shown to be different than the matrix obtained from features. It is shown that the definition of C-COMMAND can be replaced by an equivalent ultrametric definition. The new definition invokes a minimum distance between nodes and this is more aesthetically satisfying than previous varieties of definitions. From the new definition of C-COMMAND follows a new definition of of the central notion in syntax namely GOVERNMENT.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andreas Dress Vincent Moulton and Werner Terhalle. T-theory: An overview. Europ. J. Combinatorics 17:161-175 1996.

  • B. Dragovich A.Yu. Khrennikov S.V. Kozyrev and I.V. Volovich. On p-adic mathematical physics p-adic numbers. Ultrametric Analysis and Applications Journal 1:1-90 2009.

  • Backofen Rogers and Vijay-Shankar. A first-order axiomatization of the theory of finite trees. Journal of Logic Language and Information 4(1):5-39 1995.

  • Baldi P. and E.B. Baum. Bounds on the size of ultrametric structures. Phys.Rev.Lett. 56:182-184 1986.

  • Berlin Brent and Paul Kay. Basic Colour Terms. University of California Press 1969.

  • Bjorken James D. and Sidney D. Drell. Relativistic Quantum Fields. McGraw Hill 1965.

  • Boettcher S. and M. Paczuski. Aging in a model of self-organized criticality. Phys.Rev.Lett. 79: 889 1997.

  • Botha Rudolf P. Challenging Chomsky: The Generative Garden game. Blackwell Oxford 1965.

  • Brekke L. and Peter G.O. Freund. P-adelic numbers in physics. Phys.Rep. 233:1-166 1993.

  • Chomsky Noam. Knowledge of Language Its Nature Origin and Use. Praeger Publishers New York 1986a.

  • Chomsky Noam. Barriers. MIT PressCambridge MA 1986b.

  • Christiansen Henning. Chr as grammar formalism. 2001.

  • Cowan Nelson. The magical number 4 in short-term memory:a reconsideration of mental storage capacity. Behavioral & Brain Sciences 24(1) 2001.

  • Delon F. Espaces ultramétriques. J. Symbolic Logic 49:405 1984.

  • Evans Nicholas and Stephen Levison. The myth of language universals: Language diversity and its importance for cognitive science. Behavioural and Brain Sciences 32(05):429-448 2009.

  • Frazier Lyn. Sentence processing: A tutorial review. Attention & Performance XII:559-586 1987.

  • Guénoche A. Order distance associated with hierarchy. J.Classification 14:101 1997.

  • Haegeman Liliane. Introduction to Government and Binding Theory. Blackwell Oxford 1994.

  • Hammer Hanno. Tree structure entropy and the action principle for neighbourhood topologies. Technical report Cambridge DAMTP 1998.

  • Higgs P.G. Overlaps between rna secondary structure. Phys.Rev.Lett. 76:704-707 1996.

  • Jackendoff R.S. X̄Syntax. A Study of Phrase Structure. MIT Press Cambridge Mass 1977.

  • Jardine N. and R. Sibson. Mathematical Taxonomy. John Wiley and Sons 1971.

  • Johnson N.F. The psychological reality of phrase-structure rules. Journal of Verbal Learning and Verbal Behaviour 4:469-475 1965.

  • Karwowski W. and R.V. Mendes. Hierarchical structures and asymmetric stochastic processes on p-adics and adeles. J.Math.Phys. 35:4637 1994.

  • Kayne Richard S. Unambiguous paths. Levels of Syntactic Representation 5 1981.

  • Keenan E.L. and Bernard Comrie. Noun phrase accessibility and universal grammar. Linguistic Inquiry 8:63-99 1977.

  • Levelt W.J.M. Hierarchical clustering algorithms in the psychology of grammar. Advances in psycholinguistics 1970.

  • Lockward D.G. Introduction to Stratification Grammar. Harcourt Brace Jovanovich Inc.New York. 1972.

  • McCloskey J. Syntatic Theory. Cambridge University Press Cambridge 1988.

  • Miller George A. The magical number seven plus or minus two:some limits on our capacity to process information. Psy.Rev. 63:81-97 1956. Murtagh F. On ultrametricity data coding and computation. Journal of Classification 21:167-184 2004.

  • Ogielchi A.T. and D.L. Stein. Dynamics on ultrametric spaces. Phys.Rev.Lett. 55:1634-1637 1985.

  • Parga N. and M.A. Virasoro. The ultrametric organization of neural net memories. J.de Physique 47:1857 1986.

  • Perlman E.M. and M. Schwarz. The directed polymer problem. Europhys.Lett. page 227 1992.

  • Prince A. and P. Smolensky. Optimality: From neural networks to universal grammar. Science page 1604 1997.

  • R. Rammal G. Toulouse and M.A. Virasoro. Ultrametricity for physicists. Rev.Mod.Phys. 58: 765-788 1986.

  • Rissanen Jorma. A universal prior for integers and estimation by minimum description length. Annals of Statistics 11:416-431 1983.

  • Roberts Mark D. Name strategy: Its existence and implications. Int.J.Computational Cognition 3:1-14 2005.

  • Rutten J.J.M.M. Elements of generalized ultrametric domain theory. Theor.Comp.Sci. 170:349 1996.

  • Schweinberger M. and T.A.B. Snijders. Settings in social networks: A measurement model.

  • Sociological Methodology 23:307-341 2003.

  • Shepard R.N. and P. Arabie. Additive clustering: Representative of similarities as combinations of discrete overlapping properties. Psychological Review 86:87-123 1979.

  • Sneath P.H. and R.R. Sokal. The Principles and Practice of Numerical Classification. W.H.Freeman and Company San Francisco. 1973.

  • Sorton George. Introduction to the history of science. Introduction to the History of Science III: 552 1947.

  • Vlad M.O. Fractal time ultrametric topology and fast relation. Phys.Lett. A189:299-303 1994.

  • Weissman M.B. What is spin glass. Rev.Mod.Phys. 65:829 1993.

  • Young M.R. and W.S. DeSarbo. A parametric procedure for ultrametric tree estimation from conditional rank order proximity data. Psychometrika 60:47 1995.

  • Zadrozny Wlodek. Minimum description length and compositionality. Computing Meaning 1: 113-128 1999.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 55 0
PDF Downloads 108 88 7