Identification and phenotypic plasticity of Pseudanabaena catenata from the Svalbard archipelago

Open access

Abstract

A filamentous benthic cyanobacteria, strain USMAC16, was isolated from the High Arctic Svalbard archipelago, Norway, and a combination of morphological, ultrastructural and molecular characterisation (16S rRNA gene sequence) used to identify to species level. Cell dimensions, thylakoid arrangement and apical cell shape are consistent with the Pseudanabaena genus description. The molecular characterisation of P. catenata gave 100% similarity with Pseudanabaena catenata SAG 1464-1, originally reported from Germany. Strain USMAC16 was cultured under a range of temperature and photoperiod conditions, in solid and liquid media, and harvested at exponential phase to examine its phenotypic plasticity. Under different culture conditions, we observed considerable variations in cell dimensions. The longest cell (5.91±0.13 μm) was observed at 15°C under 12:12 light:dark, and the widest cell (3.24±0.06 μm) at 4°C under 12:12 light: dark in liquid media. The study provides baseline data documenting the morphological variation of P. catenata in response to changing temperature regimes.

Acinas S.G., Haverkamp T.H.A., Huisman J. and Stal L.J. 2009. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME Journal 3: 31–46.

Anagnostidis K. and Komárek J. 1988. Modern approach to the classification system of cyanophytes. 5. Oscillatoriales. Archiv für Hydrobiologie 80: 327–472.

Andersen R.A. 2005. Algal Culturing Techniques. Elsevier Academic Press: 92–94.

Boyer S.L., Flechtner V.R. and Johansen J.R. 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution 18: 1057–1069.

Bornet É. and Flahault C. 1886. Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France (quatrième et dernier fragment). Annales des Sciences Naturelles, Botanique, Septième Série 7: 177–262.

Castenholz R.W. 2001. Phylum BX. Cyanobacteria. Oxygenic Photosynthetic Bacteria. In: D.R. Boone, R.W. Castenholz and G.M. Garrity (eds), Bergey’s Manual of Systematic Bacteriology. Volume 1: The Archaea and the Deeply Branching and Phototropic Bacteria. Springer-Verlag, New York: 413–439.

Dehning I. and Tilzer M.M. 1989. Survival of Scenedesmus acuminatus (Chlorophyceae) in darkness. Journal of Phycology 25: 509–515.

Geitler L. 1932. Cyanophyceae. In: Rabenhorst L. (ed.), Kryptogamen Flora von Deutschland, Osterreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig: 130–159.

Gomont M. 1892. Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. – Lyngbyées. Annales des Sciences Naturelles, Botanique, Série 7 16: 91–264.

Gupta S. and Agrawal S.C. 2006. Survival of blue-green and green algae under stress conditions. Folia Microbiologica 51: 121–128.

Gugger M., Lyra C., Suominen I., Tsitko I., Humbert J.F., Salkinoja-Salonen M.S. and Sivonen K. 2002. Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 52: 1007–1015.

Kaštovská K., Elster J., Stibal M. and Šantrůčková H. 2005. Microbial Assemblages in Soil Microbial Succession After Glacial Retreat in Svalbard (High Arctic). Microbial Ecology 50: 396–407.

Kling H. and Watson S. 2003. A new planktic species of Pseudanabaena (cyanoprokaryota, Oscillatoriales) from North American large lakes. Hydrobiologia 502: 383–388.

Komárek J. 2003. Problem of the taxonomic category “species” in cyanobacteria. Algological Studies 109: 281–297.

Komárek J. 2006. Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21: 349–375.

Komárek J. and Anagnostidis K. 1986. Modern approach to the classification system of cyanophytes. 2. Chroococcales. Archiv für Hydrobiologie, Supplement 73: 157–226.

Komárek J. and Anagnostidis K. 1989. Modern approach to the classification system of Cyanophytes 4 – Nostocales. Archiv für Hydrobiologie, Supplement 82: 247–345.

Komárek J. and Anagnostidis K. 2005. Süsswasserflora von Mitteleuropa. Cyanoprokaryota: 2.Teil/2nd Part: Oscillatoriales. Vol. 19. Elsevier, Verlag, München: 86 pp.

Komárek J., Kastovsky J., Mares J. and Johansen R.J. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 86: 295–335.

Kvíderová J. and Lukavský J. 2001. A new unit for crossed gradients of temperature and light. In: J. Elster, J. Seckbach, W.F. Vincent and O. Lhotský (eds), Algae and extreme environments. Nova Hedwigia, Beihefte, Beih, Stuttgart 123: 541–550.

Lauterborn R. 1915. Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlammes natürlicher Gewässer. Verhandlungen des Naturhistorisch Medizinischen Vereins zu Heidelberg. Neue Folge 13: 395–481.

Lyra C., Suomalainen S., Gugger M., Vezie C., Sundman P., Paulin L. and Sivonen K. 2001. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology 51: 513–526.

Morita R.Y. 1975. Psychrophilic bacteria. Bacteriological Reviews 39: 144–167.

Nalewajko C. and Murphy T. 2001. Effect of temperature and availability of nitrogen and phosphorous on abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2: 45–48.

Okano K., Suzuki E., Ohta S., Miyata N., Tani Y. and Ozaki Y. 2015. Seasonal changes in cyanotoxin and toxic cyanobacteria in lake Hachiro. Journal of Japan Society on Water Environment 38: 23–30.

Rippka R., Deruelles J., Waterbury J. B., Herdman M. and Stanier R.Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.

Ronquist F. and Huelsenbeck J.P. 2003. MRBAYES 3-Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

Singh S.P and Singh P. 2015. Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews 50: 431–444.

Stackebrandt E. and Ebers J. 2006. Taxonomic parameters revisited: Tarnished gold standards. Microbiology Today 33: 152–155.

Szafer W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin International de l’Académie des Sciences de Cracovie, Classe des Sciences Mathématiques et Naturelles, Série B: 161–167.

Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013. MEGA6, Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

Winder M. and Sommer U. 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.

Yu G., Zhu M., Chen Y., Pan Q., Chai W. and Li R. 2015. Polyphasic characterization of four species of Pseudanabaena (Oscillatoriales, Cyanobacteria) from China and insights into polyphyletic divergence within the Pseudanabaena genus. Phytotaxa 192: 1–12.

Zapomelova E., Hisem D., Rehakova K., Hrouzek P., Jezberova J., Komarkova J., Korelusova J. and Znachor P. 2008. Experimental comparison of phenotypic plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex (cyanobacteria). Journal of Plankton Research 30: 1257–1269.

Zhang D., Dechatiwongse P., Del Rio-Chanona E.A., Maitland G.C., Hellgardt K. and Vassiliadis V.S. 2015. Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Research 9: 263–274.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 28
PDF Downloads 37 37 12