Algal pigments in Hornsund (Svalbard) sediments as biomarkers of Arctic productivity and environmental conditions

Open access

Abstract

Pigments (chloropigments-a and carotenoids) in sediments and macroalgae samples, collected in Hornsund, in July 2015 and July 2016, were analysed (HPLC) in this work. In spite of the aerobic conditions and the periodic intensive solar irradiation in the Arctic environment, neither of which favour pigment preservation in water column and surface sediments, our results indicate that these compounds can provide information about phytoplankton composition, primary production and environmental conditions in this region. The sum of chloropigments-a, a marker of primary production, in the Hornsund sediments varied from 0.40 to 14.97 nmol/g d.w., while the sum of carotenoids ranged from 0.58 to 8.08 nmol/g d.w. Pheophorbides-a and pyropheophorbides-a made up the highest percentage in the sum of chloropigments-a in these sediments, supplying evidence for intensive zooplankton and/or zoobenthos grazing. Among the carotenoids, fucoxanthin and its derivatives (19’-hexanoyloxyfucoxanthin and 19’-hexanoyloxy-4-ketofucoxanthin) contributed the highest percentage, which points to the occurrence mainly of diatoms and/or haptophytes in the water. The pigment markers show that the input of macroalgae to the total biomass could be considerable only in the intertidal zone.

Aliani S., Bartholini G., Deglinnocenti F., Delfanti R., Galli C., Lazzoni E., Lorenzelli R., Malaguti A., Meloni R., Papucci C., Salvi S. and Zaborska A. 2013. Multidisciplinary investigations in the marine environment of the inner Kongsfjord, Svalbard Islands (September 2000 and 2001). Chemistry and Ecology 20: 19–28.

Anderson N.J., Brodersen K.P., Ryves D.B., Mcgowan S., Johansson L.S., Jeppesen E. and Leng M.J. 2008. Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Grenland). Ecosystem 11: 307–324.

Arrigo K.R., Van Dijken G. and Pabi S. 2008. Impact of shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35: L19063.

Beszczyńska-Möller A., Węsławski J.M., Walczowski W. and Zajączkowski M. 1997. Estimation of glacial meltwater discharge into Svalbard coastal waters. Oceanologia 39: 289–299.

Bianchi T.S., Dawson R. and Sawangwong P. 1988. The effects of microbenthic deposit-feeding on the degradation of chloropigments in sandy sediments. Journal of Experimental Marine Biology and Ecology 122: 243–255.

Bianchi T.S., Rolff C., Widbom B. and Elmgren R. 2002. Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes, and transformation. Estuarine, Coastal and Shelf Science 55: 369–383.

Birkemoe T. and Liengen T. 2000. Does collembolan grazing influence nitrogen fixation by cyanobacteria in the high Arctic? Polar Biology 23: 589–592.

Borodina A.V. and Ladygina L.V. 2013. The effect of cultivation conditions on accumulation of carotenoids in Phaeodactylum tricornutum Bohl. (Bacillariophyta). International Journal of Algae 15: 274–284.

Canuel E.A., Lerberg E.J., Dickhut R.M., Kuehl S.A., Bianchi T.S. and Wakeham S.G. 2009. Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: The Sacramento-San Joaquin River Delta (California, USA). Marine Pollution Bulletin 59: 154–163.

Chapin D.M., Bliss L.C. and Bledsoe L.J. 1991. Environmental regulation of nitrogen fixation in a high arctic lowland ecosystem. Canadian Journal of Botany 69: 2744–2755.

Chen N., Bianchi T.S., Mckee B.A. and Bland J.M. 2001. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Organic Geochemistry 32: 543–561.

Cibic T., Blasutto O., Hancke K. and Johnsen G. 2007. Microphytobenthic species composition, pigment concentration, and primary production in sublittoral sediments of the Tronfheimsfjord (Norway). Journal of Phycology 43: 1126–1137.

Cottier F., Tverberg V., Inall M., Svendsen H., Nilsen F. and Griffiths C. 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research 110: 1–18.

Desphande B.N., Tremblay R., Pienitz R. and Vincent W.F. 2014. Sedimentary pigments as indicators of cyanobacterial dynamics in a hypereutrophic lake. Journal of Paleolimnology 52: 171–184.

Dobrzyn P., Tatur A. and Keck A. 2009. Photosynthetic pigments as indicators of phytoplankton during spring and summer in Adventfjorden (Spitsbergen). Oceanology 49: 368–376.

Drewnik A., Węsławski J.M., Włodarska-Kowalczuk M., Łącka M., Promińska A., Zaborska A. and Głuchowska M. 2016. From the worm’s point of view: I: Environmental setting of benthic ecosystem in Arctic fjord (Hornsund, Spitsbergen). Polar Biology 39: 1411–1424.

Falk-Petersen S., Dahl T.M., Scott C.L., Sargent J.R., Gulliksen B., Kwaśniewski S., Hop H. and Millar R.-M. 2002. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Marine Ecology Progress Series 227: 187–194.

Falk-Petersen S., Mayzaud P., Kattner G. and Sargent J.R. 2009. Lipids and life strategy of Arctic Calanus. Marine Biology Research 5: 18–39.

Fietz S., Nicklisch A. and Oberhänsli H. 2007. Phytoplankton response to climate changes in Lake Baikal during the Holocene and Kazantsevo Interglacials assessed from sedimentary pigments. Journal of Paleolimnology 37: 177–203.

Florian C.R., Miller G.H., Fogel M.L., Wolfe A.P., Vinebrooke R.D. and Geisrdοttir A. 2015. Algal pigments in Arctic lake sediments record biogeochemical changes due to Holocene climate variability and anthropogenic global change. Journal of Paleolimnology 54: 53–69.

Freiberg R., Nõmm M., Tõnno I., Alliksaar T., Nõges T. and Kisand A. 2011. Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake. Estonian Journal of Earth Sciences 60: 91–101.

Gervais M., Atallach E., Gyakum J.R. and Tremblay L.B. 2016. Arctic air masses in a warming world. American Meteorological Society 29: 2359–2373.

Görlich K., Węsławski J.M. and Zajączkowski M. 1987. Suspensions settling effect on macrobenthos biomass distribution in the Hornsund fjord, Spitsbergen. Polar Research 5: 175–192.

Grzelak K. and Kotwicki L. 2012. Meiofaunal distribution in Hornsund fjord, Spitsbergen. Polar Biology 35: 269–280.

Guilizzoni P., Marchetto A., Lami A., Brauer A., Vigliotti L., Musazzi S., Langone L., Manca M., Lucchini F., Calanchi N., Dinelli E. and Mordenti A. 2006. Records of environmental and climatic changes during the late Holocene from Svalbard: paleolimnology of Kongressvatnet. Journal of Paleolimnology 36: 325–351.

Hegseth E.N. 1992. Sub-ice assemblages of Barents Sea: Species composition, chemical composition and growth rates. Polar Biology 12: 485–496.

Itoh N., Tani Y. and Soma M. 2003. Sedimentary photosynthetic pigments of algae and phototrophic bacteria in Lake Hamana, Japan: temporal changes of anoxia in its five basins. Limnology 4: 139–148.

Jeffrey S.W. and Vesk M. 1997. Introduction to marine phytoplankton and their pigment signatures. In: S.W. Jeffrey, R.F.C. Mantoura and S.W. Wright (eds) Phytoplankton pigments in oceanography. SCOR UNESCO Publishing, Paris: 37–84.

Jeffrey S.W. and Wright S.W. 1997. Qualitative and quantitative HPLC analysis of SCOR reference algal cultures. In: S.W. Jeffrey, R.F.C. Mantoura and S.W. Wright (eds) Phytoplankton pigments in oceanography. SCOR UNESCO Publishing, Paris: 37–84.

Jeffrey S.W., Llewellyn C.A., Barlow R.G. and Mantoura R.F.C. 1997. Pigment processes in the sea: a selected bibliography. In: S.W. Jeffrey, R.F.C. Mantoura and S.W. Wright (eds) Phytoplankton pigments in oceanography. SCOR UNESCO Publishing, Paris: 167–178.

Jiang S., Liu X., Sun J., Yuan L., Sun L. and Wang Y. 2011. A multi-proxy sediment record of late Holocene and recent climate change from lake near Ny-Ålesund, Svalbard. Boreas 40: 468–480.

Jørgensen B.B., Glud R.N. and Holby O. 2005. Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea). Marine Ecology Progress Series 292: 85–95.

Kay J.E., Holland M.M., Bitz C.M., Blanchard-Wrigglesworth E.A., Gettelman A., Conley A. and Bailey D. 2012. The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. Journal of Climate 25: 5433–5450.

Kowalewska G., Witkowski A. and Toma B. 1996. Chlorophylls c in bottom sediments as markers of diatom biomass in the southern Baltic Sea. Oceanologia 38: 227–249.

Kowalewska G., Winterhalter B., Talbot H.M., Maxwell J.R. and Konat J. 1999. Chlorins in sediments of the Gotland Deep (Baltic Sea). Oceanologia 41: 81–97.

Krajewska M., Szymczakyła M. and Kowalewska G. 2017. Carotenoid determination in recent marine sediments – practical problems during sample preparation and HPLC analysis. Current Chemistry Letters 6: 91–104.

Leavitt P.R. and Hodgson D.A. 2001. Sedimentary pigments. In: J.P. Smol, H.J. Birks and W.M. Last (eds) Tracking Environmental Change Using Lake Sediments. Kluwer Academic Publisher, Dordreht: 295–325.

Leavitt P.R., Vinebrooke R.D., Donald D.B., Smol J.P. and Schindler D.W. 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388: 457–459.

Leu E., Mundy C.J., Assmy P., Campbell K., Gabrielsen T.M., Gosselin M., Juul-Pedersen T. and Gradinger R. 2015. Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography 139: 151–170.

Louda J.W., Li J., Liu L., Winfree M.N. and Baker E.W. 1998. Chlorophyll-a degradation during cellular senescence and death. Organic Geochemistry 29: 1233–1251.

Louda J.W., Liu L. and Baker E.W. 2002. Senescence- and death-related alternation of chlorophylls and carotenoids in marine phytoplankton. Organic Geochemistry 33: 1635–1653.

Manabe S. and Stouffer R.F. 1980. Sensitivity of global climate model to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research 85: 5529–5554.

McGowan S., Barker P., Haworth E.Y., Leavitt P.R., Maberly S.C. and Pates J. 2012. Humans and climate as drivers of algal community change in Windermere since 1850. Freshwater Biology 57: 260–277.

Meyers P.A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27: 213–250.

Morata N. and Renaud P.E. 2008. Sedimentary pigments in the western Barents Sea: A refelction of pelagic-benthic coupling? Deep Sea Research II 55: 2381–2389.

Muckenhuber S., Nilsen F., Korosov A. and Sandven S. 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. The Cryosphere 10: 149–158.

Overpeck J., Hughen K., Hardy D., Bradley R., Case R., Douglas M., Finney B., Gajewski K., Jacoby G., Jennings A., Lamoureux S., Lasca A., Macdonald G., Moore J., Retelle M., Smith S., Wolfe A. and Zielinski G. 1997. Arctic Environemntal Change of the Last Four Centuries. Science 278: 1251–1256.

Paerl H.W., Valdes L.M., Pinckney J.L., Piehler M.F., Dyble J. and Moisander P.H. 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. BioScience 53: 953–964.

Patoine A. and Leavitt P.R. 2006. Century-long synchrony of fossil algae in a chain of Canadian prairie Lakes. Ecology 87: 1710–1721.

Pettersen R., Johnsen G., Berge J. and Kjeldsberg Hovland E. 2011. Phytoplankton chemotaxonomy in waters around the Svalbard archipelago reveals high amounts of Chl b and presence of gyroxanthin-diester. Polar Biology 34: 627–635.

Piwosz K., Walkusz W., Hapter R., Wieczorek P., Hop H. and Wiktor J. 2009. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biology 32: 549–559.

Post E., Forchhammer M.C., Bret-Harte M.S., Callaghan T.V., Christensen T.R., Elberling B., Fox A.D., Gilg O., Hik D.S., Høye T.T., Ims R.A., Jeppesen E., Klein D.R., Madsen J., Mcguire A.D., Rysgaard S., Schindler D.E., Stirling I., Tamstorf M.P., Tyler N.J.C., Van Der Wal R., Welker J., Wookey P.A., Schmidt N.M. and Aastrup P. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.

Rasiq K.T., Kurian S., Karapurkar S.G. and Naqvi S.W.A. 2016. Sedimentary pigments and nature of organic matter within the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (Indian margin). Estuarine, Coastal and Shelf Science 176: 91–101.

Reuss N. and Conley D.J. 2005. Effects of sediment storage conditions on pigment analyses. Limnology and Oceanography: Methods 3: 477–487.

Reuss N., Conley D.J. and Bianchi T.S. 2005. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry 95: 283–302.

Schüller S.E., Allison M.A., Bianchi T.S., Tian F. and Savage C. 2013. Historical variability in past phytoplankton abundance and composition in Doubtful Sound, New Zealand. Continental Shelf Research 69: 110–122.

Smoła Z.T., Tatarek A., Wiktor J.M., Wiktor J.M.W. Jr., Kubiszyn A. and Węsławski J.M. 2017. Primary producers and production in Hornsund and Kongsfjorden-comparison of two fjord system. Polish Polar Research 38: 351–373.

Stewart K.J., Coxson D. and Grogan P. 2011. Nitrogen inputs by associative cyanobacteria across a low Arctic tundra landscape. Arctic, Antarctic and Alpine Research 43: 267–278.

Swerpel S. 1985. The Hornsund fiord: water masses. Polish Polar Research 6: 475–496.

Szymczakyła M. and Kowalewska G. 2007. Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment. Marine Pollution Bulletin 55: 512–528.

Szymczakyła M. and Kowalewska G. 2009. Chloropigments-a in sediments of the Gulf of Gdansk deposited during the last 4000 years as indicators of eutrophication and climate change. Palaeogeography, Palaeoclimatology, Palaeocology 284: 283–294.

Szymczakyła M., Wawrzyniak-Wydrowska B. and Kowalewska G. 2006. Products of chlorophyll a transformation by selected benthic organisms in the Odra Estuary (Southern Baltic Sea). Hydrobiologia 554: 155–164.

Szymczakyła M., Louda J.W. and Kowalewska G. 2008. Comparison of extraction and HPLC methods for marine sedimentary chloropigment determinations. Journal of Liquid Chromatography and Related Technologies 31: 1162–1180.

Szymczakyła M., Kowalewska G. and Louda J.W. 2011. Chlorophyll-a and derivatives in recent sediments as indicators of productivity and depositional conditions. Marine Chemistry 125: 39–48.

Szymczakyła M., Krajewska M., Winogradow A., Zaborska A., Breedveld G.D. and Kowalewska G. 2017. Tracking trends in eutrophication based on pigments in recent coastal sediments. Oceanologia 59: 1–17.

Tani Y., Matsumoto G.I., Soma M., Soma Y., Hashimoto S. and Kawai T. 2009. Photosynthetic pigments in sediment core HDP-04 from Lake Hovsgol, Mongolia, and their implication for changes in algal productivity and lake environment for the last 1 Ma. Quaternery International 205: 74–83.

Tribovillard N., Algeo T.J., Lyons T. and Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An uptade. Chemical Geology 232: 12–32.

Wassmann P., Duarte C.M., Agusti S. and Sejr M.K. 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17: 1235–1249.

Welschmeyer N.A. and Lorenzen C.J. 1985. Chlorophyll a budgets: Zooplankton grazing and phytoplankton growth in temperate fjord and Central Pacific Gyres. Limnology and Oceanography 30: 1–21.

Weydmann A., Coelho N.C., Serrão E.A., Burzyński A. and Pearson G.A. 2016. Pan-Arctic population of the keystone copepoded Calanus glacialis. Polar Biology 39: 2311–2318.

Węsławski J.M. and Legeżyńska J. 1998. Glaciers caused zooplankton morality? Journal of Plankton Research 20: 1233–1240.

Węsławski J.M., Wiktor J.Jr. and Kotwicki L. 2010. Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Marine Biodiversity 40: 123–130.

Wiktor J. and Wojciechowska K. 2005. Differences in taxonomic composition of summer phytoplankton in two fjords of west Spitsbergen, Svalbard. Polish Polar Research 26: 259–268.

Włodarska-Kowalczuk M., Pawłowska J. and Zajączkowski M. 2013. Do foraminifera mirror diversity and distribution patterns of microbenthic fauna in an Arctic glacial fjord? Marine Micropaleontology 103: 30–39.

Wold A., Darnis G., Søreide J.E., Leu E., Philippe B., Fortier L., Poulin M., Kattner G., Graeve M. and Falk-Petersen S. 2011. Life strategy and diet of Calanus glacialis during the winter-spring transition in Amundsen Gulf, south-eastern Beaufort Sea. Polar Biology 34: 1929–1946.

Wróbel B., Filippini M., Piwowarczyk J., Kędra M., Kuliński K. and Middelboe M. 2013. Low virus to prokaryote ratios in the cold: benthic viruses and prokaryotes in subpolar marine ecosystem (Hornsund, Svalbard). International Microbiology 16: 45–52.

Zaborska A. 2017. Sources of 137Cs to an Arctic fjord (Hornsund, Svalbard). Journal of Environmental Radioactivity 180: 19–26.

Zaborska A., Beszczyńska-Möller A. and Włodarska-Kowalczuk M. 2017. History of heavy metal accumulation in the Svalbard area: Distribution, origin and transport pathways. Environmental Pollution 231: 437–450.

Zaborska A., Włodarska-Kowalczuk M., Legeżyńska J., Jankowska E., Winogradow A. and Deja K. In press. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords – Signs of maturing of Arctic fjordic system? Journal of Marine System: doi.org/10.1016/j.jmarsys.2016.11.005.

Zajączkowski M., Szczuciński W., Plessen B. and Jernas P. 2010. Benthic foraminifera in Hornsund, Svalbard: Implications for paleoenvironmental reconstructions. Polish Polar Research 31: 349–375.

Zapata M., Jeffrey S.W., Wright S.W., Rodriguez F., Garrido J.L. and Clemenston L. 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Marine Ecology Progress Series 270: 83–102.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 269 40
PDF Downloads 118 118 31