Area, depth and elevation of cryoconite holes in the Arctic do not influence Tardigrada densities

Open access

Abstract

Water bears (Tardigrada) are known as one of the most extremophile animals in the world. They inhabit environments from the deepest parts of the oceans up to the highest mountains. One of the most extreme and still poorly studied habitats which tardigrades inhabit are cryoconite holes. We analysed the relation between area, depth, elevation and tardigrades densities in cryoconite holes on four glaciers on Spitsbergen. The mean (±SD) of cryoconite area was 1287.21±2400.8 cm2, while the depth was on average 10.8±11.2 cm, the elevation 172.6±109.66 m a.s.l., and tardigrade density 24.9±33.0 individuals per gram of wet material (n = 38). The densities of tardigrades on Hans Glacier reached values of up to 168 ind. cm3, 104 ind. g−1 wet weight, and 275 ind. g−1 dry weight. The densities of tardigrades of the three glaciers in Billefjorden were up to 82 ind. cm2, 326 ind. g−1 wet weight and 624 ind. g−1 dry weight. Surprisingly, although the model included area, depth and elevation as independent variables, it cannot explain Tardigrada density in cryoconite holes. We propose that due to the rapid melting of the glacier surface in the Arctic, the constant flushing of cryoconite sediments, and inter-hole water-sediment mixing, the functioning of these ecosystems is disrupted. We conclude that cryoconite holes are dynamic ecosystems for microinvertebrates in the Arctic.

Anesio A.M. and Laybourn-Parry J. 2012. Glaciers and ice sheets as a biome. Trends in Ecology & Evolution 4: 219–225.

Connor E.F., Courtney A.C. and Yoder J.M. 2000. Individuals–area relationships: the relationship between animal population density and area. Ecology 81: 734–748.

Cook J., Edwards A. and Hubbard A. 2015. Biocryomorphology: Integrating Microbial Processes with Ice Surface Hydrology, Topography, and Roughness. Frontiers of Earth Science 3: 78.

Dastych H. 1985. West Spitsbergen Tardigrada. Acta Zoologica Cracoviensia 28: 169–214.

Dastych H. 2004. Hypsibius thaleri sp. nov., a new species of a glacier–dwelling tardigrade from the Himalaya, Nepal (Tardigrada). Mitteilungen aus den Hamburgischen Zoologischen Museum und Institut 101: 169–183.

Dastych H., Kraus H.J. and Thaler K. 2003. Redescription and notes on the biology of the glacier tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from Ötztal Alps, Austria. Mitteilungen aus den Hamburgischen Zoologischen Museum und Institut 100: 73–100.

De Smet W.H. and Van Rompu E.A. 1994. Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belgian Journal of Zoology 124: 27–37.

Drygalski E.V. 1897. Die Kryokonitlöcher. In: W.H. Kuhl (ed.). Grönland–Expedition der Gesellschaft für Erdkunde zu Berlin 1891–1893. Herausgegeben von Dekgesellschaft für Erdkunde zu Berlin I, Berlin: 93–103.

Edwards A., Mur L.A.J., Girdwood S.E., Anesio A.M., Stibal M., Rassner S.M.E., Hell K., Pachebat J.A., Post B., Bussell J.S., Cameron S.J.S., Griffith G.W. and Hodson A.J. 2014. Coupled cryoconite ecosystem structure–function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiology Ecology 89: 222–237.

Everitt D.A. 1981. An ecological study of an Antarctic freshwater pool with particular reference to Tardigrada and Rotifera. Hydrobiologia 83: 225–237.

Fountain A., Tranter M., Nylen T.H., Lewis K.J., Mueller D.R. 2004. Evolution of cryoconite holes and their contribution to melt water runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology 50: 35–45.

Gajda R.T. 1958. Cryoconite phenomena on the Greenland ice cap in the Thule area. The Canadian Geographer/Le Géographe canadien 3: 35–44.

Gaston K. and Blackburn T.M. 2000. Pattern and process in macroecology. Blackwell Publishing: 392 pp.

Gaston K.J. and Matter S.M. 2002. Individuals–area relationships: comment. Ecology 83: 288–293.

Grøngaard A., Pugh P.J.A. and McInnes S. 1999. Tardigrades, and other cryoconite biota, on the Greenland ice sheet. Zoologischer Anzeiger 238: 211–214.

Guidetti R., Rizzo A.M., Altiero T. and Rebecchi L. 2012. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration. Planetary and Space Science 74: 97–102.

Hodson A., Anesio A.M., Tranter M., Fountain A., Osborn M., Priscu J., Laybourn-Parry J. and Sattler B. 2008. Glacial ecosystems. Ecological Monographs 78: 41–67.

Hodson A., Cameron K., Boggild C., Irvine-Fynn T., Langford H., Pearce D. and Banwart S. 2010. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology 56: 349–362.

Kaczmarek Ł., Jakubowska N., Celewicz-Gołdyn S. and Zawierucha K. 2016. Cryoconite holes microorganisms (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista) – a review. Polar Records 52: 176–203

Kathman R.D. and Nelson D.R. 1987. Population trends in the aquatic tardigrade Pseudobiotus augusti (Murray). In: R. Bertolani (ed.) Biology of Tardigrades. Selected Symposia and Monographs U.Z.I., 1. Mucchi, Modena: 155–168.

MacArthur R.H., Diamond J.M. and Karr J.R. 1972. Density compensation in island faunas. Ecology 53: 330–342.

MacArthur R.H. and Wilson E.O. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey: 224 pp.

MacDonell S. and Fitzsimons S. 2008. The formation and hydrological significance of cryoconite holes. Progress in Physical Geography 32: 595–610.

McIntyre N.F. 1984. Cryoconite hole thermodynamics. Canadian Journal of Earth Sciences 21: 152–156.

Mueller D.R. and Pollard W.H. 2004. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology 27: 66–74.

Mueller D.R., Vincent W.F., Pollard W.H. and Fristen C.H. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedvigia, Beiheft 123: 173–197.

Nelson D.R., Guidetti R. and Rebecchi L. 2015. Phylum Tardigrada. In: J. Thorp and D.C. Rogers (eds) Ecology and General Biology. Thorp and Covich’s Freshwater Invertebrates, Academic Press, Massachusetts: 347–380.

Porazinska D.L., Fountain A.G., Nylen T.H., Tranter M., Virginia R.A. and Wall D.H. 2004. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36: 84–91.

Ramazzotti G. and Maucci W. 1983. II Philum Tardigrada (III. edizione riveduta e aggiornata). Memorie dell’Istituto Italiano di Idrobiologia 41: 1–1016.

R Development Core Team. 2010. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Root R.B. 1973. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 45: 95–120.

Séméria Y. 2003. Tardigrades des cryoconites du Groenland. Exploration de l’inlandsis et de ses abords immédiats. Bulletin Mensuel de la Societe Linneenne de Lyon 73: 191–192.

Southwood T.R.E. and Henderson P.A. 2000 Ecological methods. John Wiley and Sons, Cambridge: 592 pp.

Stibal M., Šabacká M. and Kaštovská K. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology 52: 644–654.

Stibal M., Tranter M., Benning M.G. and Řehák J. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental Microbiology 10: 2172–2178.

Takeuchi N., Kohshima S.S. and Seko K. 2001. Structure, formation, and darkening process of albedo–reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115–122.

Vonnahme T.R., Devetter M., Zárský J.D., Sabacká M. and Elster J. 2016. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard. Biogeosciences Discussion 13: 659–674.

Wharton R.A., McKay C.P., Simmons G.M. and Parker B.C. 1985. Cryoconite holes on glaciers. Bioscience 35: 499–503.

Wharton R.A., Vinyard J.R. and Vinyard W.C. 1983. Distribution of snow and ice algae in western North America. Madrono 30: 201–209.

Zárský J.D., Stibal M., Hodson A., Sattler B., Schostag M., Hansen L.H. and Psenner R. 2013. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia–oxidizing archaea. Environmental Research Letters 8: 35–44.

Zawierucha K., Kolicka M., Takeuchi N. and Kaczmarek Ł. 2015a. What animals can live in cryoconite holes? A faunal review. Journal of Zoology 295: 159–169.

Zawierucha K., Smykla J., Michalczyk Ł., Gołdyn B. and Kaczmarek Ł. 2015b. Distribution and diversity of Tardigrada along altitudinal gradients in the Hornsund, Spitsbergen (Arctic). Polar Research 34: 24168.

Zawierucha K., Zmudczyńska-Skarbek K., Kaczmarek Ł. and Wojczulanis-Jakubas K. 2016. The influence of a seabird colony on abundance and species composition of water bears (Tardigrada) in Hornsund (Spitsbergen, Arctic). Polar Biology 39: 713–723.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 26
PDF Downloads 13 13 6