Another look at tarsometatarsi of early penguins

Open access

Abstract

The tarsometatarsus, a compound bone from the lower leg in birds, is the most important skeletal element in fossil penguin taxonomy, especially in the case of early members of this group. However, any attempt to go beyond the problem of mere classification obviously requires the better understanding of osteological traits under consideration. This in turn touches on the issue of interplay between bone and concomitant soft-tissue structures, such as muscles, tendons and vessels. This paper focuses on the more holistic comprehension of the tarsometatarsal section of the Eocene penguin foot, based on the analysis of the myology and the vascular system of its modern counterparts. A number of graphical reconstructions are provided with a discussion of the role of the hypotarsus and intermetatarsal foramina.

Acosta Hospitaleche C. and Jadwiszczak P. 2011. Enigmatic morphological disparity in tarsometatarsi of giant penguins from the Eocene of Antarctica. Polish Polar Research 32: 175–180.

Baumel J.J. and Witmer L.M. 1993. Osteologia. In: J.J. Baumel (ed.) Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club, Cambridge, MA: 45–132.

Chávez Hoffmeister M. 2014. Phylogenetic characters in the humerus and tarsometatarsus of penguins. Polish Polar Research 35 (3): 469–496.

Currey J.D. 2002. Bones. Structure and mechanics. Princeton University Press, Princeton: 436 pp.

Frost P.G.H., Siegfried W.R. and Greenwood P.J. 1975. Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. Journal of Zoology 175: 231–241.

Jadwiszczak P. 2009. Penguin past: The current state of knowledge. Polish Polar Research 30: 3–28.

Jadwiszczak P. and Chapman S.D. 2011. The earliest fossil record of a medium-sized penguin. Polish Polar Research 32: 269–277.

Jadwiszczak P. and Gaździcki A. 2014. First report on hind-toe development in Eocene Antarctic penguins. Antarctic Science 26 (3): 279–280.

Ksepka D.T. and Ando T. 2011. Penguins past, present, and future: trends in the evolution of the Sphenisciformes. In: G. Dyke and G. Kaiser (eds) Living dinosaurs: the evolutionary history of modern birds. John Wiley & Sons Ltd, Chichester: 155–186.

Ksepka D.T., Fordyce R.E., Ando T. and Jones C.M. 2012. New fossil penguins (AVes, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. Journal of Vertebrate Paleontology 32: 235–254.

Klemm R.D. 1969. Compartative myology of the hind limb of procellariiform birds. Southern Illinois University Monographs, Science Series No. 2, Carbondale: 269 pp.

Mayr G. 2015. Variations in the hypotarsus morphology of birds and their evolutionary significance. Acta Zoologica, early view doi: 10.1111/azo.12117.

Midtgård U. 1981. The Rete tibiotarsale and arterio-venous associationin the hind limb of birds: a comparative morphological study on counter-current heat exchange system. Acta Zoologica 62: 67–87.

Midtgård U. 1982. Patterns in the blood vascular system in the pelvic limb of birds. Journal of Zoology 196: 545–567.

Myrcha A., Tatur A. and Del Valle R.A. 1990. A new species of fossil penguin from Seymour Island, West Antarctica. Alcheringa 14: 195–205.

Myrcha A., Jadwiszczak P., Tambussi C.P., Noriega J.I., Gaździcki A., Tatur A. and Del Valle R. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research 23: 5–46.

Schreiweis D.O. 1982. A comparative study of the appendicular musculature of penguins (Aves: Sphenisciformes). Smithsonian Contributions to Zoology 341: 1–46.

Slack K.E., Jones C.M., Ando T., Harrison G.L., Fordyce R.E., Arnason U. and Penny D. 2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular Biology and Evolution 23: 1144–1155.

Stephan B. 1979. Vergleichende Osteologie der Pinguine (Comparative osteology of penguins). Mitteilungen aus dem Zoologischen Museum Berlin 55 (Supplement Annalen fuer Ornithologie 3): 3–98.

Thomas D.B., Ksepka D.T. and Fordyce R.E. 2011. Penguin heat-retention structures evolved in a greenhouse Earth. Biology Letters 7: 461–464.

Watson M. 1883. Report on anatomy of the Spoheniscidae. Report of the Scientific Results of the Voyage of H.M.S. Challenger 1873–76 7: 1–242.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 283 261 22
PDF Downloads 122 117 8