Crustal and upper mantle seismic structure of the Svalbard Archipelago from the receiver function analysis

Open access

Abstract

Receiver function provides the signature of sharp seismic discontinuities and the information about the shear wave (S−wave) velocity distribution beneath the seismic station. This information is very valuable in areas where any or few reflection and/or refraction studies are available and global and/or regional models give only rough information about the seismic velocities. The data recorded by broadband seismic stations have been analysed to investigate the crustal and upper mantle structure of the Svalbard Archipelago. Svalbard Archipelago is a group of islands located in Arctic, at the north−western part of the Barents Sea continental platform, which is bordered to the west and to the north by passive continental margins. The new procedure of parameterization and selection of receiver functions (RFs) has been proposed. The back−azimuthal sections of RF show a strong variation for the HSPB and KBS stations. Significant amplitudes of transversal component of RF (T−RF) for the HSPB station indicate a shallow dipping layer towards the southwest. The structure of the crust beneath the SPITS array seems to be less heterogeneous, with very low amplitudes of converted phase comparing to the KBS and HSPB stations. Forward modelling by trial−and−error method shows a division of the crust into 3-4 layers beneath all stations and layering of the uppermost mantle beneath the SPITS array and the HSPB stations. The thickness of the mantle transition zone is larger for western part of archipelago and smaller for eastern part comparing to iasp91 model.

AMMON C.J. 1991. The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America 81: 2504-2510.

BERTEUSSEN K.A. 1977. Moho depth determinations based on spectral ratio analysis of NORSAR long−period P waves. Physics of the Earth and Planetary Interiors 31: 313-326.

BINA C.R. and HELFFRICH G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research 99 (B8): 15853-15860.

BIRKENMAJER K. 1981. The geology of Svalbard, the western part of Barents Sea and the continental margin of Scandinavia. In: A.E. Nairn, M. Churkin Jr. and F.G. Stehli (eds) The Ocean Basins and Margins, The Arctic Ocean, Plenum, New York; 5: 265-239.

CASSIDY J.F. 1992. Numerical Experiment in Broadband Receiver Function Analysis. Bulletin of the Seismological Society of America 82: 1453-1474.

CZUBA W. 2013. Seismic view on the Svalbard passive continental margin. Acta Geophysica 61 (5): 1088-1100.

CZUBA W.,GRAD M.,GUTERCH A.,MAJDAŃSKI M.,MALINOWSKI M.,MJELDE R.,MOSKALIK M., ŚRODA P., WILDE−PIÓRKO M. and NISHIMURA Y. 2008. Seismic crustal structure along the deep transect Horsted'05, Svalbard. Polish Polar Research 29 (3): 279-290.

GARDNER G.H.F., GARDNER L.W. and GREGORY A.R. 1974. Formation velocity and density - the diagnostic basics for stratigraphic traps. Geophysics 39: 770-780.

GEISSLER W.H., KIND R. and YUAN X. 2008. Upper mantle and lithospheric heterogeneities in cen− tral and eastern Europe as observed by teleseismic receiver functions. Geophysical Journal In− ternational 174: 351-376.

GEISSLER W.H., KÄMPF H., KIND R., BRÄUER K., KLINGE K., PLENEFISCH T., HORÁLEK J., ZEDNÍK J. and NEHYBKA V. 2005. Seismic location of a CO2 source in the upper mantle of the western Eger rift, Central Europe. Tectonics 24 (5): 1-23.

GRAD M., TIIRA T., BEHM M., BELINSKY A.A., BOOTH D.C., BRÜCKL E., CASSINIS R., CHADWICK R.A., CZUBA W., EGORKIN A.V., ENGLAND R.W., ERINCHEK Yu.M., FOUGLER G.R., GACZYŃ− SKI E., GOSAR A., GRAD M., GUTERCH A., HEGEDÜS E., HRIBCOVÁ P., JANIK T., JOKAT W., KARAGIANNI E.E., KELLER G.R., KELLY A., KOMMINAHO K., KORJA T., KORSTRÖM J., KOS− TYUCHENKO S.L., KOZLOVSKAYA E., LASKE G., LENKEY L., LUOSTO U., MAGUIRE P.K.H., MAJDAŃSKI M., MALINOWSKI M., MARONE F., MECHIE J., MILSHTEIN E.D., MOTUZA G., NIKOLOVA S., OLSSON S., PASYANOS M., PETROV O.V., RAKITOV V.E., RAYKOVA R., RITZ− MANN O., ROBERTS R., SACHPAZI M., SANINA I.A., SXHMIDT−AURSCH M.C., SERRANO I., ŠPIČÁK A., ŚRODA P., ŠUMANOVAC F., TAYLOR B., TIIRA T., VEDRENTSEV A.G., VOZÁR J., WEBER Z.,WILDE−PIÓRKO M., YEGOROVA T.P., YLINIEMI J., ZELT B. and ZOLOTOV E.E, 2009. The Moho depth map of the European Plate. Geophysical Journal International 176: 279-292.

HARLAND W.B. 1997. The Geology of Svalbard. Geological Society Memoir No. 17. The Geological Society, London: 521 pp.

HAUSER J.,DYER K.M., PASYANOS M. E., BUNGUM H., FALEIDE J.I., CLARK S.A. and SCHWEITZER J. 2011.Aprobabilistic seismic model for the European Arctic. Journal of Geophysical Research 116: 1-17.

HJELLE A. 1993. The Geology of Svalbard. Norsk Polarinstitutt, Oslo: 163 pp.

KENNETT B.L.N. and ENGDAHL E.R. 1991. Traveltimes for global earthquakes location and phase identification. Geophysical Journal International 105: 429-465.

KIND R., KOSAREV G.L. and PETERSEN N.V. 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophysical Journal International 121: 191-202.

KLITZKE P., FALEIDE J.I., SCHECK−WENDEROTH M. and SIPPEL J. 2015. A lithosphere−scale struc− tural model of the Barents Sea and Kara Sea region. Solid Earth 6: 153-172.

KNAPMEYER−ENDRUN B., KRÜGER F., LEGENDRE C.P., GEISSLER W.H. and PASSEQ WORKING GROUP 2013. Tracing the influence of the Trans−European Suture Zone into the mantle transi− tion zone. Earth and Planetary Science Letters 363: 73-87.

KRYSIŃSKI L., GRAD M.,MJELDE R., CZUBA W. and GUTERCH A. 2013. Seismic and density structure of the lithosphere−asthenosphere system along transect Knipovich Ridge−Spitsbergen−Barents Sea - geological and petrophysical implications. Polish Polar Research 34 (2): 111-138.

KUSTOWSKI B., EKSTRÖM G. and DZIEWOŃSKI A. 2008. The shear−wave velocity structure in the upper mantle beneath Eurasia. Geophysical Journal International 17: 978-992.

LANGSTON C.A. 1977. Corvallis, Oregon, crustal and upper mantle structure from teleseismic P and S waves. Bulletin of the Seismological Society of America 67: 713-724.

LEGENDRE C.P., MEIER T., LEBEDEV S., FRIEDERICH W. and VIERECK−GÖTTE L. 2012. A shear− −wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophysical Journal International 191: 282-304.

LEVSHIN A.L., SCHWEITZER J., WEIDLE C., SHAPIRO N.M. and RITZWOLLER M.H. 2007. Surface wave tomography of the Barents Sea and surrounding regions. Geophysical Journal Interna− tional 170: 441-459.

MÜLLER G. 1985. The reflectivity method: a tutorial. Journal of Geophysics 58: 153-174.

OWENS T.J., ZANDT G. and TAYLOR S.R. 1984. Seismic evidence for an ancient rift beneath the Cum− berland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms. Journal of Geophysical Research 89: 7783-7795.

PILIDOU S., PRIESTLEY K., GUDMUNDSSON O. and DEBAYLE E. 2004. Upper mantle S−wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomogra− phy: the Iceland and Azores plumes. Geophysical Journal International 159:1057-1076.

RITZMAN O. and FALEIDE J.I. 2009. The crust and mantle lithosphere in the Barents Sea/Kara Sea re− gion. Tectonophysics 470: 89-104.

RITZMANN O.,MAERCKLIN N., FALEIDE J., BUNGUM H.,MOONEY W. and DETWEILER S. 2007. A three−dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization. Geophysical Journal International 170: 417-435.

SAUL J., KUMAR M.R. and SARKAR D. 2000. Lithospheric and upper mantle structure of the Indian Shield, from teleseismic receiver function. Geophysical Research Letters 27: 2357-2360.

SELLEVOLL M.A.,DUDA S.J.,GUTERCH A., PAJCHEL J., PERCHUĆ E. and THYSSEN F. 1991. Crustal structure in the Svalbard region from seismic measurements. Tectonophysics 189: 55-71.

SOLHEIM A., FALEIDE J.I., ANDERSON E.S., VANNESTE K., ELVERHØI A., UENZELMANN−NEBEN G. and FORSBERG C.F. 1998. Late Cenozoic seismic stratigraphy and glacial geological devel− opment of the East Greenland and Svalbard−Barents Sea continental margins. Quatenary Sci− ence Reviews 17: 155-184.

STAMMLER K. 1993. Seismic Handler - Programmable multichannel data handler for interactive and automatic processing of seismological analyses. Computer and Geosciences 2: 135-140.

STEEL R., GJELBERG J., HELLAND−HANSEN W., KLEINSPEHN K., NØTTVEDT A. and RYE−LARSEN M. 1985. The Tertiary strike−slip basins and orogene belt of Spitsbergen. In: K. Biddle and N. Cristie−Blick (eds) Strike−slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication 37: 339-359.

TALWANI M. and ELDHOLM O. 1977. The evolution of the Norwegian−Greenland Sea: recent results and outstanding problems. Geological Society of America Bulletin 88: 969-999.

VINNIK L.P. 1977. Detection of waves converted from P to SVin the mantle. Physics of the Earth and Planetary Interiors 15: 39-45.

WESSELS P. and SMITH W.H.F. 1998. New, improved version of generic mapping tools released.

EOS, Transaction, American Geophysical Union 79: 579.

WILDE−PIÓRKO M., GRAD M.,WIEJACZ P. and SCHWEITZER J. 2009. HSPB seismic broadband sta− tion in Southern Spitsbergen: First results on crustal and mantle structure from receiver functions and SKS splitting. Polish Polar Research 30 (4): 301-316.

ZHU L. and KANAMORI H. 2000. Moho depth variation in southern California from teleseismic re− ceiver functions. Journal of Geophysical Research 105: 2969-2980.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 130 24
PDF Downloads 74 74 16