Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic

Open access


Cold−adapted marine bacteria producing extracellular hydrolytic enzymes are important for their industrial application and play a key role in degradation of particulate organic matter in their natural environment. In this work, members of a previously−obtained protease−producing bacterial collection isolated from different marine sources from Potter Cove (King George Island, South Shetlands) were taxonomically identified and screened for their ability to produce other economically relevant enzymes. Eighty−eight proteolytic bacterial isolates were grouped into 25 phylotypes based on their Amplified Ribosomal DNA Restriction Analysis profiles. The sequencing of the 16S rRNA genes from representative isolates of the phylotypes showed that the predominant culturable protease−producing bacteria belonged to the class Gammaproteobacteria and were affiliated to the genera Pseudomonas, Shewanella, Colwellia, and Pseudoalteromonas, the latter being the predominant group (64% of isolates). In addition, members of the classes Actinobacteria, Bacilli and Flavobacteria were found. Among the 88 isolates screened we detected producers of amylases (21), pectinases (67), cellulases (53), CM−cellulases (68), xylanases (55) and agarases (57). More than 85% of the isolates showed at least one of the extracellular enzymatic activities tested, with some of them producing up to six extracellular enzymes. Our results confirmed that using selective conditions to isolate producers of one extracellular enzyme activity increases the probability of recovering bacteria that will also produce additional extracellular enzymes. This finding establishes a starting point for future programs oriented to the prospecting for biomolecules in Antarctica.

  • ATCM 2002. Naming and numbering system for Antarctic Specially Protected Areas. XXV Antarctic Treaty Consultative Meeting, Warszawa, Poland. Decision 1.

  • BAKERMANS C. 2012. Psychrophiles: life in the cold. In: R. Anitori (ed.) Extremophiles: Microbiology and Biotechnology. Horizon Scientific Press, Hethersett: 53-76.

  • BERNARDET J.F. and NAKAGAWA Y. 2006. An introduction to the family Flavobacteriaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt (eds) The Prokaryotes: a Handbook on the Biology of Bacteria, Vol. 7. Springer, New York: 455-480.

  • BRIZZIO S., TURCHETTI B., LIBKIND D., BUZZINI P. and BROOCK M. 2007. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology 53: 519-525.

  • BRUNNEGÅRD J., GRANDEL S., STÅHL H., TENGBERG A. and HALL J. 2004. Nitrogen cycling in deesea sediments of the Porcupine Abyssal Plain, NE Atlantic. Progress in Oceanography 63: 159-181.

  • CAVICCHIOLI R., CHARLTON T., ERTAN H., MOHD OMAR S., SIDDIQUI K.S. and WILLIAMS T.J. 2011. Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology 4: 449-460.

  • CHEN S., KAUFMAN M.G.,MIAZGOWICZ K.L., BAGDASARIAN M. andWALKER E.D. 2013. Molecular characterization of a cold−active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresource Technology 128: 145-155.

  • CLARKE A., BARNES D.K.Z. and HODGSON D.A. 2005. How isolated is Antarctica? Trends in Ecology and Evolution 20: 1-3.

  • COLLINS T., DÁMICO S., MARX J.C., FELLER G. and GERDAY C. 2007. Cold-adapted enzymes. In: C. Gerday and N. Glansdorff (eds) Physiology and Biochemistry of Extremophiles. ASM Press, Washington DC: 165-179.

  • COWAN D.A. and TOW L.A. 2004. Endangered Antarctic Environments. Annual Review of Microbiology 58: 649-690.

  • DANG H., ZHU H.,WANG J. and LI T. 2009. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep−sea sediments of the Southern Okinawa Trough. World Jour−nal of Microbiology and Biotechnology 25: 71-79.

  • DIAS A., DINI−ANDREOTE F., LACAVA P.T., SÁ A.L.,MELO I.S., AZEVEDO J.L. and ARAJUO W.L. 2009. Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World Journal of Microbiology and Biotechnology 25: 1305-1311.

  • EUZÉBY J.P. 1997. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. International Journal of Systematic Bacteriology 47: 590-592.

  • GOMES J. and STEINER W. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology 42: 223-235.

  • GROSSART H.P., LEVOLD F.,ALLGAIER M., SIMON M. and BRINKHOFF T. 2005. Marine diatom species harbour distinct bacterial communities. Environmental Microbiology 7: 860-873.

  • HOLMSTRÖM C. and KJELLEBERG S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS MicrobiologyEcology 30: 285-293.

  • HUNTER E., MILLS H. and KOSTKA J. 2006. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Applied and Environmental Microbiology 72: 5689-5701.

  • HUSTON A.L. and DEMING J.W. 2002. Relationships between microbial extracellular enzymatic activity and suspended and sinking particulate organic matter: seasonal transformations in the North Water. Deep−Sea Research II 49: 5211-5225.

  • KIM O.S., CHO Y.J., LEE K., YOON S.H., KIM M., NA H., PARK S.C., JEON Y.S., LEE J.H., YI H., WON S. and CHUN J. 2012. Introducing EzTaxone: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. International Journal of Systematicand Evolutionary Microbiology 62: 716-721.

  • KIRCHMAN D.L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMSMicrobiology Ecology 39: 91-100.

  • KIRCHMAN D.L., DITTEL A.I., FINDLAY S.E.G. and FISCHER D. 2004. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology 35: 243-257.

  • KONIECZNA I., WOJTASIK B., KWINKOWSKI M., BURSKA D., NOWIŃSKI K., ŻARNOWIEC P. and KACA W. 2011. Analysis of cultivable aerobic bacteria isolated from bottom sediments in the Wijdefjorden region, Spitsbergen. Polish Polar Research 32: 181-195.

  • KUDDUS M. and RAMTEKE P.W. 2012. Recent developments in production and biotechnological applications of cold−active microbial proteases. Critical Reviews in Microbiology 38: 330-338.

  • KUMAR L., AWASHI G. and SINGH B. 2011. Extremophiles: a novel source of industrially important enzymes. Biotechnology 10: 121-135.

  • LI N.,MENG K.,WANG Y., SHI P., LUO H., BAI Y., YANG P. and YAO B. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Applied Microbiology and Biotechnology 80: 231-240.

  • LOPERENA L., SORIA V., VARELA H., LUPO S., BERGALLI A., GUIGOU M., PELLEGRINO A., BERNARDO A., CALVIŃO A., RIVAS F. and BATISTA S. 2012. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World Journal of Microbiology and Bio−technology 28: 2249-2256.

  • MARGESIN R. and SCHINNER F. 1992. A comparison of extracellular proteases from three psychrotrophic strains of Pseudomonas fluorescens. Journal of General and Applied Microbiology 38: 209-225.

  • MARGESIN R., NEUNER G. and STOREY K.B. 2007. Cold−loving microbes, plants, and animals: fundamental and applied aspects. Naturwissenschaften 94: 77-99.

  • OLIVERA N.L., SEQUEIROS C. and NIEVAS M.L. 2007. Diversity and enzyme properties of protease−producing bacteria isolated from sub−Antarctic sediments of Isla de los Estados, Argentina. Extremophiles 11: 517-526.

  • SCHLOSS I.R., ABELE D.,MOREAU S., DEMERS S., BERS A.V., GONZÁLEZ O. and FERREYRA G.A. 2012. Response of phytoplankton dynamics to 19−year (1991-2009) climate trends in Potter Cove (Antarctica). Journal of Marine systems 92: 53-66.

  • SECADES P., ALVAREZ B andGUIJARRO J.A. 2003. Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS MicrobiologyLetters 226: 273-279.

  • SRINIVAS T.N., NAGESWARA RAO S.S., VISHNU VARDHAN REDDY P., PRATIBHA M.S., SAILAJA B., KAVYA B., HARA KISHORE K., BEGUM Z., SINGH S.M. and SHIVAJI S. 2009. Bacterial diversity and bioprospecting for cold−active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny−Ålesund, Svalbard, Arctic. Current Microbiology 59: 537-547.

  • STACKEBRANDT E. and GOEBEL B.M. 1994. Taxonomic note: A place for DNA−DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. InternationalJournal of Systematic and Evolutionary Microbiology 44: 846-849.

  • SUNNOTEL O. and NIGAM P. 2002. Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World Journal of Microbiology and Biotechnology 18: 835-839.

  • TALBOT V. and BIANCHI M. 1997. Bacterial proteolytic activity in sediments of the Subantarctic Indian Ocean Sector. Deep−Sea Research II 44: 1069-1084.

  • TATIAN M., SAHADE R., KOWALKE J., KIVATINITZ S.C. and ESNAL G. 2002. Food availability and gut contents in the ascidian Cnemidocarpa verrucosa at Potter Cove, Antarctica. Polar Biology 25: 58-64.

  • TROPEANO M., CORIA S., TURJANSKI A., CICERO D., BERCOVICH A., MAC CORMACK W. and VÁZQUEZ S. 2012. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production. Polar Research 31: 18507.

  • TRUONG L.V., TUYEN H.,HELMKE E.,BINH L.T. and SCHWEDER T. 2001. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5: 35-44.

  • TUTINO M.L., PARRILLI E., GIAQUINTO L., DUILIO A., SANNIA G., FELLER G. and MARINO G. 2002. Secretion of alpha−amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. Journal of Bacteriology 184: 5814-5817.

  • ULRICH A., KLIMKE G. andWIRTH S. 2007. Diversity and activity of cellulose−decomposing bacteria, isolated from a sandy and a loamy soil after long−term manure application. Microbial Ecology 55: 512-522.

  • VAN PETEGEM F., COLLINS T.,MEUWIS M.A., GERDAY C., FELLER G. and VAN BEEUMEN J. 2003. The structure of a cold−adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site. Journal of Biological Chemistry 278: 7531-7539.

  • VÁZQUEZ S.C., CORIA S.H. and MAC CORMACK W.P. 2004. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbial Research 159: 157-166.

  • VÁZQUEZ S.C., RUBERTO L. and MAC CORMACK W.P. 2005. Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. PolarBiology 28: 319-325.

  • VÁZQUEZ S.C., HERNANDEZ E. and MAC CORMACK W.P. 2008. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96−47 strain. Revista Argentina de Microbiologia 40: 63-71.

  • WILLIAMS P.G. 2009. Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends in Biotechnology 27: 45-52.

  • XIONG H., SONG L., XU Y., TSOI M.Y., DOBRETSOV S. and QIAN P.Y. 2007. Characterization of proteolytic bacteria from the Aleutian deep−sea and their proteases. Journal of Industrial Micro−biology and Biotechnology 34: 63-71.

  • ZENG R., XIONG P. and WEN J. 2006. Characterization and gene cloning of a cold−active cellulase from a deep−sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10: 79-82.

  • ZHOU M.Y., CHEN X.L., ZHAO H.L., DANG H.Y., LUAN X.W., ZHANG X.Y., HE H.L., ZHOU B.C. and ZHANG Y.Z. 2009. Diversity of both the culturable protease−producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microbial Ecology 58: 582-590.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 33
PDF Downloads 13 13 12