Distinguishing between two Antarctic species of Eocene Palaeeudyptes penguins: a statistical approach using tarsometatarsi

Open access


Defining species boundaries, due to morphological variation, often represents a significant challenge in paleozoology. In this paper we report results from multi− and univariate data analyses, such as enhanced clustering techniques, principal coordinates or− dination method, kernel density estimations and finite mixture model analyses, revealing some morphometric patterns within the Eocene Antarctic representatives of Palaeeudyptes penguins. These large−sized birds were represented by two species, P. gunnari and P. klekowskii, known mainly from numerous isolated bones. Investigations focused on tarso− metatarsi, crucial bones in paleontology of early penguins, resulted in a probability−based framework allowing for the “fuzzy” partitioning the studied specimens into two taxa with partly overlapping size distributions. Such a number of species was supported by outcomes from both multi− and univariate studies. In our opinion, more reliance should be placed on the quantitative analysis of form when distinguishing between species within the Antarctic Palaeeudyptes.

ACOSTA HOSPITALECHE C. 2013. Palaeeudyptes klekowskii Myrcha, Tatur y del Valle, 1990: descripción e importancia del más completo esqueleto de pingüino del Eoceno superior de Antártida. 27° Jornadas Argentinas de Paleontología de Vertebrados (La Rioja, Argentina). Actas: 14.

ACOSTA HOSPITALECHE C. and REGUERO M. 2010. First articulated skeleton of Palaeeudyptesgunnari from the late Eocene of Seymour (= Marambio) Island (Antarctica). Antarctic Science 22: 289-298.

ACOSTA HOSPITALECHE C. and TAMBUSSI C. 2008. South American fossil penguins: a systematic update. Oryctos 7: 109-127.

ASHMAN K.M., BIRD C.M. and ZEPF S.E. 1994. Detecting bimodality in astronomical datasets. Astronomical Journal 108: 2348.

BENAGLIA T., CHAUVEAU D., HUNTER D.R. and YOUNG D. 2009. Mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software 32: 1-29.

BRODKORB P. 1963. Catalogue of fossil birds. Bulletin of the Florida State Museum 7: 179-293.

CLARKE J.A., OLIVERO E.B. and PUERTA P. 2003. Description of the earliest fossil penguin from South America and first Paleogene vertebrate locality of Tierra del Fuego, Argentina. AmericanMuseum Novitates 3423: 1-18.

CLARKE J.A.,KSEPKA D.T., STUCCHI M.,URBINA M.,GIANNINI N.,BERTELLI S.,NARVÁEZ Y. and BOYD C.A. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy ofSciences (PNAS) 104: 11545-11550.

CLARKE J.A., KSEPKA D.T., SALAS−GISMONDI R., ALTAMIRANO A.J., SHAWKEY M.D., D’ALBA L., VINTHER J., DEVRIES T.J. and BABY P. 2010. Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers. Science 330: 954-957.

ELLIOT D.H. and TRAUTMAN T.A. 1982. Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In: C. Craddock (ed.) Antarctic Geoscience. The University of Wisconsin Press, Madison: 287-297.

FORDYCE R.E. and THOMAS D.B. 2011. Kaiika maxwelli, a new early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand. New ZealandJournal of Geology and Geophysics 54: 43-51.

GOWER J.C. and ROSS G.J.S. 1969. Minimum Spanning Trees and Single Linkage Cluster Analysis. Journal of the Royal Statistical Society, Series C (Applied Statistics) 18: 54-64.

HILL T. and LEWICKI P. 2006. Statistics: methods and applications: a comprehensive reference forscience, industry, and data mining. StatSoft, Inc., Tulsa: 832 pp.

HUXLEY T.H. 1859. On a fossil bird and a fossil cetacean from New Zealand. Quarterly Journal ofthe Geological Society of London 15: 670-677.

JADWISZCZAK P. 2006. Eocene penguins of Seymour Island, Antarctica: Taxonomy. Polish PolarResearch 27: 3-62.

JADWISZCZAK P. 2009. Penguin past: The current state of knowledge. Polish Polar Research 30: 3-28.

JADWISZCZAK P. 2012. Partial limb skeleton of a “giant penguin” Anthropornis from the Eocene of Antarctic Peninsula. Polish Polar Research 33: 259-274.

JADWISZCZAK P. 2013. Taxonomic diversity of Eocene Antarctic penguins: a changing picture. In: M.J. Hambrey, P.F. Barker, P.J. Barrett, V. Bowman, B. Davies, J.L. Smellie andM. Tranter (eds) Antarctic Palaeoenvironments and Earth−Surface Processes. Geological Society (London), Special Publications 381. First published online June 25, 2013, http://dx.doi.org/10.1144/SP381.7.

JADWISZCZAK P. and MÖRS T. 2011. Aspects of diversity in early Antarctic Penguins. ActaPalaeontologica Polonica 56: 269-277.

KOMÁREK A. 2009. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval−censored data. ComputationalStatistics and Data Analysis 53: 3932-3947.

KSEPKA D.T., BERTELLI S. and GIANNINI N.P. 2006. The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics 22: 412-441.

KSEPKA D.T., FORDYCE R.E., ANDO T. and JONES C.M. 2012. New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. Journal ofVertebrate Paleontology 32: 235-254.

LIVEZEY B.C. 1989. Morphometric patterns in Recent and fossil penguins (Aves, Sphenisciformes). Journal of Zoology (London) 219: 269-307.

MAECHLER M., ROUSSEEUW P., STRUYF A., HUBERT M. and HORNIK K. 2013. Cluster: Cluster analysis basics and extensions. R package (version 1.14.4) available from http://cran.r−project.org/web/packages/cluster.

MARENSSI S.A. 2006. Eustatically controlled sedimentation recorded by Eocene strata of the James Ross Basin, Antarctica. In: J.E. Francis, D. Pirrie and J.A. Crame (eds) Cretaceous-Tertiary High−Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society, LondonSpecial Publications 258: 125-133.

MCLACHLAN G. andKRISHNAN T. 2008. TheEM Algorithm and Extensions. 2nd edition. John Wiley & Sons, Inc., Hoboken: 400 pp.

MILLIGAN G.W. and COOPER M.C. 1988. A study of standardization of variables in cluster analysis. Journal of Classification 5: 181-204.

MYRCHA A., JADWISZCZAK P., TAMBUSSI C.P., NORIEGA J.I., GAŹDZICKI A., TATUR A. and DEL VALLE R. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research 23: 5-46.

MYRCHA A., TATUR A. and DEL VALLE R.A. 1990. A new species of fossil penguin from Seymour Island, West Antarctica. Alcheringa 14: 195-205.

PARADIS E., CLAUDE J. and STRIMMER K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

PARK T. and FITZGERALD E.M.G. 2012. A review of Australian fossil penguins (Aves: Sphenisciformes). Memoirs of Museum Victoria 69: 309-325.

PORĘBSKI S.J. 2000. Shelf−valley compound fill produced by fault subsidence and eustatic sea level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology 28: 147-150.

RCORE TEAM 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R−project.org.

SALLABERRY M.A., YURY−YÁÑEZ R.E., OTERO R.A., SOTO−ACUÑA S. and TORRES T. 2010. Eocene birds from the western margin of southernmost South America. Journal of Paleontology 84: 1061-1070.

SIMPSON G.G. 1971. Review of fossil penguins from Seymour Island. Proceedings of the Royal Society of London B 178: 357-387.

SLACK K.E., JONES C.M., ANDO T., HARRISON G.L., FORDYCE R.E., ARNASON U. and PENNY D. 2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. MolecularBiology and Evolution 23: 1144-1155.

SUZUKI R. and SHIMODAIRA H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540-1542.

TAMBUSSI C.P., ACOSTA HOSPITALECHE C.I., REGUERO M.A. and MARENSSI S.A. 2006. Late Eocene penguins from West Antarctica: systematics and biostratigraphy. In: J.E. Francis, D. Pirrie and J.A. Crame (eds) Cretaceous-Tertiary High−Latitude Palaeoenvironments, JamesRoss Basin, Antarctica. Geological Society, London, Special Publications 258: 145-161.

TAMBUSSI C.P.,REGUERO M.A.,MARENSSI S.A. and SANTILLANA S.N. 2005. Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the Late Paleocene of Antarctica. Geobios 38: 667-675.

TATUR A., KRAJEWSKI K.P. and DEL VALLE R.A. 2011. The facies and biota of the oldest exposed strata of the Eocene La Meseta Formation (Seymour Island, Antarctica). Geological Quarterly 55: 345-360.

WIMAN C. 1905. Über die alttertiären Vertebraten der Seymourinsel. Wissenschaftliche Ergebnisseder Schwedischen Südpolar−Expedition 1901-1903 3: 1-37.

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 12
PDF Downloads 6 6 2