Anonymous, Attribute Based, Decentralized, Secure, and Fair e-Donation

Osman Biçer 1  and Alptekin Küpçü 2
  • 1 Koç University,
  • 2 Koç University,

Abstract

E-cash and cryptocurrency schemes have been a focus of applied cryptography for a long time. However, we acknowledge the continuing need for a cryptographic protocol that provides global scale, decentralized, secure, and fair delivery of donations. Such a protocol would replace central trusted entities (e.g., charity organizations) and guarantee the privacy of the involved parties (i.e., donors and recipients of the donations). In this work, we target this online donation problem and propose a practical solution for it. First, we propose a novel decentralized e-donation framework, along with its operational components and security definitions. Our framework relies on a public ledger that can be realized via a distributed blockchain. Second, we instantiate our e-donation framework with a practical scheme employing privacy-preserving cryptocurrencies and attributebased signatures. Third, we provide implementation results showing that our operations have feasible computation and communication costs. Finally, we prove the security of our e-donation scheme via formal reductions to the security of the underlying primitives.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] 2019. Enigma Web Site. https://enigma.co/. Accessed: 2020-03-05.

  • [2] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. 2016. Secure Multiparty Computations on Bitcoin. Commun. ACM 59, 4 (March 2016).

  • [3] M. H. Au, W. Susilo, Y. Mu, and S. S. M. Chow. 2013. Constant-Size Dynamic K-Times Anonymous Authentication. IEEE Systems Journal 7, 2 (2013), 249–261.

  • [4] L. Axon and M. Goldsmith. 2017. PB-PKI: A Privacy-aware Blockchain-based PKI. In SECRYPT ICETE ’17.

  • [5] M. Bellare, H. Shi, and C. Zhang. 2005. Foundations of Group Signatures: The Case of Dynamic Groups. In CT-RSA ’05.

  • [6] I. Bentov and R. Kumaresan. 2014. How to Use Bitcoin to Design Fair Protocols. In CRYPTO ’14.

  • [7] O. Biçer and A. Küpçü. 2019. Versatile ABS: Usage Limited, Revocable, Threshold Traceable, Authority Hiding, Decentralized Attribute Based Signatures. Cryptology ePrint Archive, Report 2019/203. https://eprint.iacr.org/2019/203.

  • [8] E.-O. Blass and F. Kerschbaum. 2017. Strain: A Secure Auction for Blockchains. Cryptology ePrint Archive, Report 2017/1044. https://eprint.iacr.org/2017/1044.

  • [9] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten. 2014. Mixcoin: Anonymity for bitcoin with accountable mixes. In FC ’14.

  • [10] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. 2020. ZEXE: Enabling Decentralized Private Computation. In IEEE SP. IEEE Computer Society, Los Alamitos, CA, USA.

  • [11] Beth Breeze. 2013. How Donors Choose Charities: The Role of Personal Taste and Experiences in Giving Decisions. Voluntary Sector Review 4 (07 2013), 165–183. https://www.kent.ac.uk/sspssr/philanthropy/documents/How%20Donors%20Choose%20Charities%2018%20June%202010.pdf.

  • [12] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2019. Zether: Towards Privacy in a Smart Contract World. Cryptology ePrint Archive, Report 2019/191.

  • [13] Vitalik Buterin. 2013. Ethereum White Paper: A nextgeneration smart contract and decentralized application platform. (2013).

  • [14] J. Camenisch, M. Drijvers, and J. Hajny. 2016. Scalable Revocation Scheme for Anonymous Credentials Based on N-times Unlinkable Proofs. In ACM WPES ’16.

  • [15] J. Camenisch and T. Groß. 2012. Efficient Attributes for Anonymous Credentials. ACM Trans. Inf. Syst. Secur. 15, 1 (March 2012).

  • [16] J. Camenisch and J. Groth. 2005. Group Signatures: Better Efficiency and New Theoretical Aspects. In Security in Communication Networks.

  • [17] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich. 2006. How to Win the Clonewars: Efficient Periodic N-times Anonymous Authentication. In ACM CCS ’06.

  • [18] J. Camenisch and A. Lysyanskaya. 2003. A Signature Scheme with Efficient Protocols. In Security in Communication Networks. Springer Berlin Heidelberg.

  • [19] D. Cao, B. Zhao, X. Wang, and J. Su. 2012. Flexible Multiauthority Attribute-based Signature Schemes for Expressive Policy. Mob. Inf. Syst. 8, 3 (July 2012).

  • [20] Cashlib 2010. https://github.com/brownie/cashlib. Accessed: 2020-02-15.

  • [21] D. Chaum. 1983. Blind Signatures for Untraceable Payments. In CRYPTO ’82.

  • [22] Electric Coin Company. 2018. Zcash “Sapling” cryptography. https://github.com/zcash-hackworks/sapling-crypto. Accessed: 2020-02-28.

  • [23] D. Derler, C. Hanser, and D. Slamanig. 2015. A New Approach to Efficient Revocable Attribute-Based Anonymous Credentials. In IMACC ’15.

  • [24] Constantin-Cˇatˇalin Drˇagan, Daniel Gardham, and Mark Manulis. 2018. Hierarchical Attribute-Based Signatures. In CNS ’18.

  • [25] C. Dwork and M. Naor. 1993. Pricing via Processing or Combatting Junk Mail. In CRYPTO ’92.

  • [26] A. El Kaafarani, E. Ghadafi, and D. Khader. 2014. Decentralized Traceable Attribute-Based Signatures. In CT-RSA ’14.

  • [27] K. Emura, T. Hayashi, and A. Ishida. 2017. Group Signatures with Time-bound Keys Revisited: A New Model and an Efficient Construction. In ASIA CCS ’17.

  • [28] I. Eyal and E. G. Sirer. 2018. Majority is Not Enough: Bitcoin Mining is Vulnerable. Commun. ACM 61, 7 (June 2018).

  • [29] J. A. Garay, A. Kiayias, and N. Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and Applications. In EUROCRYPT ’15.

  • [30] J. A. Garay, A. Kiayias, and N. Leonardos. 2017. The Bitcoin Backbone Protocol with Chains of Variable Difficulty. In CRYPTO ’17.

  • [31] C. Garman, M. Green, and I. Miers. 2014. Decentralized Anonymous Credentials. In NDSS ’14.

  • [32] B. Hampiholi, G. Alpár, F. v. d. Broek, and B. Jacobs. 2015. Towards Practical Attribute-Based Signatures. In Security, Privacy, and Applied Cryptography Engineering.

  • [33] Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur Özkasap. 2019. LightChain: A DHT-based Blockchain for Resource Constrained Environments. arXiv preprint arXiv:1904.00375 (2019). http://arxiv.org/abs/1904.00375

  • [34] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2020. Zcash Protocol Specification. http://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf.

  • [35] J. Hwang, L. Chen, H. Cho, and D. Nyang. 2015. Short Dynamic Group Signature Scheme Supporting Controllable Linkability. In IEEE TIFS, Vol. 10.

  • [36] CAF (2018) World Giving Index. 2018. https://www.cafonline.org/docs/default-source/about-us-publications/caf_wgi2018_report_webnopw_2379a_261018.pdf?sfvrsn=c28e9140_4.

  • [37] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten. 2018. Arbitrum: Scalable, Private Smart Contracts. In USENIX (SEC’18).

  • [38] J. Katz and Y. Lindell. 2007. Introduction to Modern Cryptography (2nd ed.). Chapman & Hall/CRC.

  • [39] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis. 2016. Blockchain Mining Games. In ACM EC ’16.

  • [40] A. Kiayias, H.-S. Zhou, and V. Zikas. 2016. Fair and Robust Multi-party Computation Using a Global Transaction Ledger. In EUROCRYPT ’16.

  • [41] Sunny King and Scott Nadal. 2012. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake.

  • [42] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In IEEE SP.

  • [43] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar. 2018. CertLedger: A New PKI Model with Certificate Transparency Based on Blockchain. arXiv preprint arXiv:1806.03914 (2018). http://arxiv.org/abs/1806.03914.

  • [44] R. Kumaresan and I. Bentov. 2014. How to Use Bitcoin to Incentivize Correct Computations. In ACM CCS ’14.

  • [45] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan. 2016. Improvements to Secure Computation with Penalties. In ACM CCS ’16.

  • [46] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982).

  • [47] Litecoin 2011. https://litecoin.org/. Accessed: 2020-01-15.

  • [48] W. Lueks, G. Alpár, J.-H. Hoepman, and P. Vullers. 2015. Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers. In ICT Systems Security and Privacy Protection.

  • [49] H. K. Maji, M. Prabhakaran, and M. Rosulek. 2011. Attribute-Based Signatures. In CT-RSA ’11.

  • [50] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. 2010. ZKPDL: A Language-based System for Efficient Zero-knowledge Proofs and Electronic Cash (USENIX Security ’10).

  • [51] I. Miers, C. Garman, M. Green, and A. D. Rubin. 2013. Zerocoin: Anonymous Distributed E-Cash from Bitcoin. In IEEE SP ’13. http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf.

  • [52] Monero 2014. https://www.getmonero.org/. Accessed: 2020-01-15.

  • [53] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin. 2018. An Empirical Analysis of Traceability in the Monero Blockchain. PoPETs (2018).

  • [54] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system, http://bitcoin.org/bitcoin.pdf.

  • [55] M. Nisansala, S. Perera, and T. Koshiba. 2017. Fully secure lattice-based group signatures with verifier-local revocation. In IEEE, AINA ’17.

  • [56] T. Okamoto and K. Takashima. 2013. Decentralized Attribute-Based Signatures. In PKC ’13.

  • [57] S. Popov. 2017. The Tangle. http://www.iota.org/IOTA_Whitepaper.pdf.

  • [58] N. Roby. 2017. Application of Blockchain technology in online voting. https://www.rsaconference.com/writable/files/About/application_of_blockchain_technology_in_online_voting.pdf.

  • [59] T. Ruffing, P. Moreno-Sanchez, and A. Kate. 2014. Coin- Shuffle: Practical Decentralized Coin Mixing for Bitcoin. In ESORICS ’14.

  • [60] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. 2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In IEEE SP ’14.

  • [61] F. R. Schreiberr. 1973. Sybil. Warner Books.

  • [62] D. Slamanig, R. Spreitzer, and T. Unterluggauer. 2014. Adding Controllable Linkability to Pairing-Based Group Signatures for Free. In Information Security.

  • [63] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2017. SPECTRE : Serialization of Proof-of-work Events : Confirming Transactions via Recursive Elections.

  • [64] Yonatan Sompolinsky and Aviv Zohar. 2018. PHANTOM, GHOSTDAG : Two Scalable BlockDAG protocols.

  • [65] Paul Syverson, R Dingledine, and N Mathewson. 2004. Tor: The second generation onion router. In Usenix Security.

  • [66] Florian Tramèr, Dan Boneh, and Kenneth G. Paterson. 2020. Remote Side-Channel Attacks on Anonymous Transactions. Cryptology ePrint Archive, Report 2020/220.

  • [67] M. Urquidi, D. Khader, J. Lancrenon, and L. Chen. 2016. Attribute-Based Signatures with Controllable Linkability. In Trusted Systems.

  • [68] N. v. Saberhagen. 2013. CryptoNote v 2.0, https://cryptonote.org/whitepaper.pdf.

  • [69] D. Yaga, P. Mell, N. Roby, and K. Scarfone. 2018. Blockchain Technology Overview. Technical Report. NIST. https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf.

  • [70] A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and R. State. 2018. A Blockchain-Based PKI Management Framework. IEEE/IFIP NOMS ’18.

  • [71] G. Yang, S. Tang, and L. Yang. 2011. A Novel Group Signature Scheme Based on MPKC. In ISPEC ’11.

  • [72] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle. 2015. CoinParty: Secure Multi-Party Mixing of Bitcoins. In ACM CODASPY ’15.

OPEN ACCESS

Journal + Issues

Search