Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models

Open access


We present two information leakage attacks that outperform previous work on membership inference against generative models. The first attack allows membership inference without assumptions on the type of the generative model. Contrary to previous evaluation metrics for generative models, like Kernel Density Estimation, it only considers samples of the model which are close to training data records. The second attack specifically targets Variational Autoencoders, achieving high membership inference accuracy. Furthermore, previous work mostly considers membership inference adversaries who perform single record membership inference. We argue for considering regulatory actors who perform set membership inference to identify the use of specific datasets for training. The attacks are evaluated on two generative model architectures, Generative Adversarial Networks (GANs) and Variational Autoen-coders (VAEs), trained on standard image datasets. Our results show that the two attacks yield success rates superior to previous work on most data sets while at the same time having only very mild assumptions. We envision the two attacks in combination with the membership inference attack type formalization as especially useful. For example, to enforce data privacy standards and automatically assessing model quality in machine learning as a service setups. In practice, our work motivates the use of GANs since they prove less vulnerable against information leakage attacks while producing detailed samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Abadi P. Barham J. Chen Z. Chen A. Davis J. Dean M. Devin S. Ghemawat G. Irving M. Isard M. Kudlur J. Levenberg R. Monga S. Moore D. G. Murray B. Steiner P. Tucker V. Vasudevan P. Warden M. Wicke Y. Yu and X. Zheng. Tensorflow: A system for large-scale machine learning. In Proc. of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) pages 265–283 Berkeley CA USA 2016. USENIX Assoc.

  • [2] S. Arora R. Ge Y. Liang T. Ma and Y. Zhang. Generalization and equilibrium in generative adversarial nets (gans). In International Conference on Machine Learning pages 224–232 2017.

  • [3] S. R. Bowman L. Vilnis O. Vinyals A. M. Dai R. Jozefowicz and S. Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349 2015.

  • [4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) volume 1 pages 886–893 Piscataway NJ USA 2005. IEEE.

  • [5] C. Donahue J. McAuley and M. Puckette. Synthesizing audio with generative adversarial networks. arXiv preprint arXiv:1802.04208 2018.

  • [6] R. Ebrahimzadeh and M. Jampour. Efficient handwritten digit recognition based on histogram of oriented gradients and svm. International Journal of Computer Applications 104(9) 2014.

  • [7] M. Fredrikson S. Jha and T. Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In Proc. of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS) pages 1322–1333 New York NY USA 2015. ACM.

  • [8] I. Goodfellow J. Pouget-Abadie M. Mirza B. Xu D. Warde-Farley S. Ozair A. Courville and Y. Bengio. Generative adversarial nets. In Proc. of Advances in Neural Information Processing Systems 27 (NIPS) pages 2672–2680. NIPS Foundation 2014.

  • [9] J. Hayes L. Melis G. Danezis and E. De Cristofaro. Logan: Evaluating privacy leakage of generative models using generative adversarial networks. arXiv preprint arXiv:1705.07663 2017.

  • [10] J. Hayes L. Melis G. Danezis and E. De Cristofaro. LOGAN: Membership Inference Attacks Against Generative Models. Proceedings on Privacy Enhancing Technologies (PoPETs) 2019(1) 2019.

  • [11] L. Huang A. D. Joseph B. Nelson B. I. P. Rubinstein and J. D. Tygar. Adversarial machine learning. In AISec 2011.

  • [12] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 2013.

  • [13] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical Report University of Toronto 2009.

  • [14] K. S. Liu B. Li and J. Gao. Generative model: Membership attack generalization and diversity. CoRR abs/1805.09898 2018.

  • [15] D. G. Lowe. Object recognition from local scale-invariant features. In Computer vision 1999. The proceedings of the seventh IEEE international conference on volume 2 pages 1150–1157. Ieee 1999.

  • [16] M. Mozaffari-Kermani S. Sur-Kolay A. Raghunathan and N. K. Jha. Systematic poisoning attacks on and defenses for machine learning in healthcare. IEEE journal of biomedical and health informatics 19(6):1893–1905 2015.

  • [17] A. B. Owen. Monte Carlo theory methods and examples. 2013.

  • [18] E. Parzen. On estimation of a probability density function and mode. The annals of mathematical statistics 33(3):1065–1076 1962.

  • [19] F. Pedregosa G. Varoquaux A. Gramfort V. Michel B. Thirion O. Grisel M. Blondel P. Prettenhofer R. Weiss V. Dubourg J. Vanderplas A. Passos D. Cournapeau M. Brucher M. Perrot and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830 2011.

  • [20] A. Radford L. Metz and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 2015.

  • [21] R. Shokri M. Stronati C. Song and V. Shmatikov. Membership inference attacks against machine learning models. In Proc. of the 2017 IEEE Symposium on Security and Privacy (S&P) pages 3–18 Piscataway NJ USA 2017. IEEE.

  • [22] Sky News. The guardian view on google’s nhs grab: legally inappropriate 2017.

  • [23] N. Srivastava G. Hinton A. Krizhevsky I. Sutskever and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929–1958 2014.

  • [24] The Guardian Online. The guardian view on google’s nhs grab: legally inappropriate 2017.

  • [25] L. Theis A. van den Oord and M. Bethge. A note on the evaluation of generative models. In Proc. of the 4th International Conference on Learning Representations (ICLR) 2016.

  • [26] F. Tramèr F. Zhang A. Juels M. K. Reiter and T. Ristenpart. Stealing machine learning models via prediction apis. In Proc. of the 2016 USENIX Security Symposium pages 601–618 Berkeley CA USA 2016. USENIX Assoc.

  • [27] Y. Wu Y. Burda R. Salakhutdinov and R. Grosse. On the quantitative analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273 2016.

  • [28] H. Xiao K. Rasul and R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 2017.

  • [29] C. Yang Q. Wu H. Li and Y. Chen. Generative poisoning attack method against neural networks. arXiv preprint arXiv:1703.01340 2017.

  • [30] S. Yeom M. Fredrikson and S. Jha. The unintended consequences of overfitting: Training data inference attacks. arXiv preprint arXiv:1709.01604 2017.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 25
PDF Downloads 49 49 8