Privacy-Preserving Interdomain Routing at Internet Scale

Abstract

The Border Gateway Protocol (BGP) computes routes between the organizational networks that make up today’s Internet. Unfortunately, BGP suffers from deficiencies, including slow convergence, security problems, a lack of innovation, and the leakage of sensitive information about domains’ routing preferences. To overcome some of these problems, we revisit the idea of centralizing and using secure multi-party computation (MPC) for interdomain routing which was proposed by Gupta et al. (ACM HotNets’12). We implement two algorithms for interdomain routing with state-of-the-art MPC protocols. On an empirically derived dataset that approximates the topology of today’s Internet (55 809 nodes), our protocols take as little as 6 s of topology-independent precomputation and only 3 s of online time. We show, moreover, that when our MPC approach is applied at country/region-level scale, runtimes can be as low as 0.17 s online time and 0.20 s pre-computation time. Our results motivate the MPC approach for interdomain routing and furthermore demonstrate that current MPC techniques are capable of efficiently tackling real-world problems at a large scale.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Machiraju and R. H. Katz. Leveraging BGP dynamics to reverse-engineer routing policies. Technical Report UCB/EECS-2006-61, EECS Department, University of California, Berkeley, May 2006.

  • [2] V. Giotsas and S. Zhou. Inferring AS relationships from BGP attributes. CoRR, abs/1106.2417, 2011.

  • [3] D. Gupta, A. Segal, A. Panda, G. Segev, M. Schapira, J. Feigenbaum, J. Rexford, and S. Shenker. A new approach to interdomain routing based on secure multi-party computation. In Workshop on Hot Topics in Networks (HotNets’12), pages 37–42. ACM, 2012.

  • [4] P. Gill, M. Schapira, and S. Goldberg. Let the market drive deployment: a strategy for transitioning to BGP security. In SIGCOMM’11, pages 14–25. ACM, 2011.

  • [5] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority. In STOC’87, pages 218–229. ACM, 1987.

  • [6] D. Demmler, T. Schneider, and M. Zohner. ABY – a framework for efficient mixed-protocol secure two-party computation. In NDSS’15. The Internet Society, 2015. Code: https://github.com/encryptogroup/ABY.

  • [7] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet routing convergence. SIGCOMM’00, 30(4):175–187, 2000.

  • [8] B. Zhang, D. Massey, and L. Zhang. Destination reachability and BGP convergence time [border gateway routing protocol]. In GLOBECOM’04, volume 3, pages 1383–1389. IEEE, 2004.

  • [9] R. Oliveira, B. Zhang, D. Pei, and L. Zhang. Quantifying path exploration in the internet. IEEE/ACM Transactions on Networking, 17(2):445–458, 2009.

  • [10] N. Kushman, S. Kandula, and D. Katabi. Can you hear me now?!: It must be BGP. SIGCOMM’07, 37(2):75–84, 2007.

  • [11] L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

  • [12] A. Fabrikant, U. Syed, and J. Rexford. There’s something about MRAI: timing diversity can exponentially worsen BGP convergence. In INFOCOM’11, pages 2975–2983. IEEE, 2011.

  • [13] K. R. B. Butler, T. R. Farley, P. McDaniel, and J. Rexford. A survey of BGP security issues and solutions. Proceedings of the IEEE, 98(1):100–122, 2010.

  • [14] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In STOC’88, pages 1–10. ACM, 1988.

  • [15] A. Ben-Efraim, Y. Lindell, and E. Omri. Optimizing semihonest secure multiparty computation for the internet. In CCS’16, pages 578–590. ACM, 2016.

  • [16] W. Henecka and M. Roughan. STRIP: privacy-preserving vector-based routing. In International Conference on Network Protocols (ICNP’13), pages 1–10. IEEE, 2013.

  • [17] J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In ASIACRYPT’05, volume 3788 of LNCS, pages 236–252. Springer, 2005.

  • [18] M. Blanton, A. Steele, and M. Alisagari. Data-oblivious graph algorithms for secure computation and outsourcing. In ASIACCS’13, pages 207–218. ACM, 2013.

  • [19] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure outsourced garbled circuit evaluation for mobile phones. In USENIX Security’13, pages 289–304. USENIX, 2013.

  • [20] C. Liu, X. Shaun Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A programming framework for secure computation. In S&P’15, pages 359–376. IEEE, 2015.

  • [21] A. C. Yao. How to generate and exchange secrets. In FOCS’86, pages 162–167. IEEE, 1986.

  • [22] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay -secure two-party computation system. In USENIX Security’04, pages 287–302. USENIX, 2004.

  • [23] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In ESORICS’ 08, volume 5283 of LNCS, pages 192–206. Springer, 2008.

  • [24] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. In USENIX Security’11, pages 539–554. USENIX, 2011.

  • [25] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party computation of Boolean circuits with applications to privacy in on-line marketplaces. In CT-RSA’12, volume 7178 of LNCS, pages 416–432. Springer, 2012.

  • [26] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In FC’09, volume 5628 of LNCS, pages 325–343. Springer, 2009.

  • [27] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht. How the Estonian tax and customs board evaluated a tax fraud detection system based on secure multi-party computation. In FC’15, volume 8975 of LNCS, pages 227–234. Springer, 2015.

  • [28] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer, 2003.

  • [29] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions for faster secure computation. In CCS’13, pages 535–548. ACM, 2013.

  • [30] T. Griffin, F. Shepherd, and G. Wilfong. The stable paths problem and interdomain routing. IEEE/ACM Transactions on Networking, 10(2):232–243, 2002.

  • [31] P. Gill, M. Schapira, and S. Goldberg. Modeling on quicksand: dealing with the scarcity of ground truth in interdomain routing data. Computer Communication Review, 42(1):40–46, 2012.

  • [32] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How secure are secure interdomain routing protocols. In SIGCOMM’10, pages 87–98. ACM, 2010.

  • [33] The CAIDA AS relationships datasets. http://www.caida.org/data/as-relationships/.

  • [34] GeoLite data created by MaxMind. http://dev.maxmind.com/geoip/.

  • [35] J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of boolean functions over the basis (∧, ⊕, 1). Theoretical Computer Science, 235(1):43–57, 2000.

  • [36] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks and applications to auctions and computing minima. In CANS’09, volume 5888 of LNCS, pages 1–20. Springer, 2009.

  • [37] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In ICALP’08, volume 5126 of LNCS, pages 486–498. Springer, 2008.

  • [38] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In FC’13, volume 7859 of LNCS, pages 275–292. Springer, 2013.

  • [39] O. Goldreich. The Foundations of Cryptography - volume 2, Basic Applications. Cambridge University Press, 2004.

  • [40] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party computation. In CRYPTO’12, volume 7417 of LNCS, pages 681–700. Springer, 2012.

  • [41] J. B. Nielsen, T. Schneider, and R. Trifiletti. Constant round maliciously secure 2PC with function-independent preprocessing using LEGO. In NDSS’17. The Internet Society, 2017.

  • [42] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. In TCC’07, volume 4392 of LNCS, pages 137–156. Springer, 2007.

  • [43] I. Damgård, M. Geisler, and J. B. Nielsen. From passive to covert security at low cost. In TCC’10, volume 5978 of LNCS, pages 128–145. Springer, 2010.

  • [44] G. Asharov and C. Orlandi. Calling out cheaters: Covert security with public verifiability. In ASIACRYPT’12, volume 7658 of LNCS, pages 681–698. Springer, 2012.

  • [45] Vladimir Kolesnikov and Alex J Malozemoff. Public verifiability in the covert model (almost) for free. In ASIACRYPT’14, volume 9453 of LNCS, pages 210–235. Springer, 2014.

  • [46] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. Van Vyve. Securely solving simple combinatorial graph problems. In FC’13, volume 7859 of LNCS, pages 239–257. Springer, 2013.

  • [47] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing data transfer in garbled circuits using half gates. In EUROCRYPT’15, volume 9057 of LNCS, pages 220–250. Springer, 2015.

  • [48] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher. In S&P’13, pages 478–492. IEEE, 2013.

OPEN ACCESS

Journal + Issues

Search