Abstract

The Border Gateway Protocol (BGP) computes routes between the organizational networks that make up today’s Internet. Unfortunately, BGP suffers from deficiencies, including slow convergence, security problems, a lack of innovation, and the leakage of sensitive information about domains’ routing preferences. To overcome some of these problems, we revisit the idea of centralizing and using secure multi-party computation (MPC) for interdomain routing which was proposed by Gupta et al. (ACM HotNets’12). We implement two algorithms for interdomain routing with state-of-the-art MPC protocols. On an empirically derived dataset that approximates the topology of today’s Internet (55 809 nodes), our protocols take as little as 6 s of topology-independent precomputation and only 3 s of online time. We show, moreover, that when our MPC approach is applied at country/region-level scale, runtimes can be as low as 0.17 s online time and 0.20 s pre-computation time. Our results motivate the MPC approach for interdomain routing and furthermore demonstrate that current MPC techniques are capable of efficiently tackling real-world problems at a large scale.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Machiraju and R. H. Katz. Leveraging BGP dynamics to reverse-engineer routing policies. Technical Report UCB/EECS-2006-61 EECS Department University of California Berkeley May 2006.

  • [2] V. Giotsas and S. Zhou. Inferring AS relationships from BGP attributes. CoRR abs/1106.2417 2011.

  • [3] D. Gupta A. Segal A. Panda G. Segev M. Schapira J. Feigenbaum J. Rexford and S. Shenker. A new approach to interdomain routing based on secure multi-party computation. In Workshop on Hot Topics in Networks (HotNets’12) pages 37–42. ACM 2012.

  • [4] P. Gill M. Schapira and S. Goldberg. Let the market drive deployment: a strategy for transitioning to BGP security. In SIGCOMM’11 pages 14–25. ACM 2011.

  • [5] O. Goldreich S. Micali and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority. In STOC’87 pages 218–229. ACM 1987.

  • [6] D. Demmler T. Schneider and M. Zohner. ABY – a framework for efficient mixed-protocol secure two-party computation. In NDSS’15. The Internet Society 2015. Code: https://github.com/encryptogroup/ABY.

  • [7] C. Labovitz A. Ahuja A. Bose and F. Jahanian. Delayed internet routing convergence. SIGCOMM’00 30(4):175–187 2000.

  • [8] B. Zhang D. Massey and L. Zhang. Destination reachability and BGP convergence time [border gateway routing protocol]. In GLOBECOM’04 volume 3 pages 1383–1389. IEEE 2004.

  • [9] R. Oliveira B. Zhang D. Pei and L. Zhang. Quantifying path exploration in the internet. IEEE/ACM Transactions on Networking 17(2):445–458 2009.

  • [10] N. Kushman S. Kandula and D. Katabi. Can you hear me now?!: It must be BGP. SIGCOMM’07 37(2):75–84 2007.

  • [11] L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM Transactions on Networking 9(6):681–692 2001.

  • [12] A. Fabrikant U. Syed and J. Rexford. There’s something about MRAI: timing diversity can exponentially worsen BGP convergence. In INFOCOM’11 pages 2975–2983. IEEE 2011.

  • [13] K. R. B. Butler T. R. Farley P. McDaniel and J. Rexford. A survey of BGP security issues and solutions. Proceedings of the IEEE 98(1):100–122 2010.

  • [14] M. Ben-Or S. Goldwasser and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In STOC’88 pages 1–10. ACM 1988.

  • [15] A. Ben-Efraim Y. Lindell and E. Omri. Optimizing semihonest secure multiparty computation for the internet. In CCS’16 pages 578–590. ACM 2016.

  • [16] W. Henecka and M. Roughan. STRIP: privacy-preserving vector-based routing. In International Conference on Network Protocols (ICNP’13) pages 1–10. IEEE 2013.

  • [17] J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In ASIACRYPT’05 volume 3788 of LNCS pages 236–252. Springer 2005.

  • [18] M. Blanton A. Steele and M. Alisagari. Data-oblivious graph algorithms for secure computation and outsourcing. In ASIACCS’13 pages 207–218. ACM 2013.

  • [19] H. Carter B. Mood P. Traynor and K. Butler. Secure outsourced garbled circuit evaluation for mobile phones. In USENIX Security’13 pages 289–304. USENIX 2013.

  • [20] C. Liu X. Shaun Wang K. Nayak Y. Huang and E. Shi. ObliVM: A programming framework for secure computation. In S&P’15 pages 359–376. IEEE 2015.

  • [21] A. C. Yao. How to generate and exchange secrets. In FOCS’86 pages 162–167. IEEE 1986.

  • [22] D. Malkhi N. Nisan B. Pinkas and Y. Sella. Fairplay -secure two-party computation system. In USENIX Security’04 pages 287–302. USENIX 2004.

  • [23] D. Bogdanov S. Laur and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In ESORICS’ 08 volume 5283 of LNCS pages 192–206. Springer 2008.

  • [24] Y. Huang D. Evans J. Katz and L. Malka. Faster secure two-party computation using garbled circuits. In USENIX Security’11 pages 539–554. USENIX 2011.

  • [25] S. G. Choi K.-W. Hwang J. Katz T. Malkin and D. Rubenstein. Secure multi-party computation of Boolean circuits with applications to privacy in on-line marketplaces. In CT-RSA’12 volume 7178 of LNCS pages 416–432. Springer 2012.

  • [26] P. Bogetoft D. L. Christensen I. Damgård M. Geisler T. Jakobsen M. Krøigaard J. D. Nielsen J. B. Nielsen K. Nielsen J. Pagter M. Schwartzbach and T. Toft. Secure multiparty computation goes live. In FC’09 volume 5628 of LNCS pages 325–343. Springer 2009.

  • [27] D. Bogdanov M. Jõemets S. Siim and M. Vaht. How the Estonian tax and customs board evaluated a tax fraud detection system based on secure multi-party computation. In FC’15 volume 8975 of LNCS pages 227–234. Springer 2015.

  • [28] Y. Ishai J. Kilian K. Nissim and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO’03 volume 2729 of LNCS pages 145–161. Springer 2003.

  • [29] G. Asharov Y. Lindell T. Schneider and M. Zohner. More efficient oblivious transfer and extensions for faster secure computation. In CCS’13 pages 535–548. ACM 2013.

  • [30] T. Griffin F. Shepherd and G. Wilfong. The stable paths problem and interdomain routing. IEEE/ACM Transactions on Networking 10(2):232–243 2002.

  • [31] P. Gill M. Schapira and S. Goldberg. Modeling on quicksand: dealing with the scarcity of ground truth in interdomain routing data. Computer Communication Review 42(1):40–46 2012.

  • [32] S. Goldberg M. Schapira P. Hummon and J. Rexford. How secure are secure interdomain routing protocols. In SIGCOMM’10 pages 87–98. ACM 2010.

  • [33] The CAIDA AS relationships datasets. http://www.caida.org/data/as-relationships/.

  • [34] GeoLite data created by MaxMind. http://dev.maxmind.com/geoip/.

  • [35] J. Boyar R. Peralta and D. Pochuev. On the multiplicative complexity of boolean functions over the basis (∧ ⊕ 1). Theoretical Computer Science 235(1):43–57 2000.

  • [36] V. Kolesnikov A.-R. Sadeghi and T. Schneider. Improved garbled circuit building blocks and applications to auctions and computing minima. In CANS’09 volume 5888 of LNCS pages 1–20. Springer 2009.

  • [37] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In ICALP’08 volume 5126 of LNCS pages 486–498. Springer 2008.

  • [38] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In FC’13 volume 7859 of LNCS pages 275–292. Springer 2013.

  • [39] O. Goldreich. The Foundations of Cryptography - volume 2 Basic Applications. Cambridge University Press 2004.

  • [40] J. B. Nielsen P. S. Nordholt C. Orlandi and S. S. Burra. A new approach to practical active-secure two-party computation. In CRYPTO’12 volume 7417 of LNCS pages 681–700. Springer 2012.

  • [41] J. B. Nielsen T. Schneider and R. Trifiletti. Constant round maliciously secure 2PC with function-independent preprocessing using LEGO. In NDSS’17. The Internet Society 2017.

  • [42] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. In TCC’07 volume 4392 of LNCS pages 137–156. Springer 2007.

  • [43] I. Damgård M. Geisler and J. B. Nielsen. From passive to covert security at low cost. In TCC’10 volume 5978 of LNCS pages 128–145. Springer 2010.

  • [44] G. Asharov and C. Orlandi. Calling out cheaters: Covert security with public verifiability. In ASIACRYPT’12 volume 7658 of LNCS pages 681–698. Springer 2012.

  • [45] Vladimir Kolesnikov and Alex J Malozemoff. Public verifiability in the covert model (almost) for free. In ASIACRYPT’14 volume 9453 of LNCS pages 210–235. Springer 2014.

  • [46] A. Aly E. Cuvelier S. Mawet O. Pereira and M. Van Vyve. Securely solving simple combinatorial graph problems. In FC’13 volume 7859 of LNCS pages 239–257. Springer 2013.

  • [47] S. Zahur M. Rosulek and D. Evans. Two halves make a whole: Reducing data transfer in garbled circuits using half gates. In EUROCRYPT’15 volume 9057 of LNCS pages 220–250. Springer 2015.

  • [48] M. Bellare V. Hoang S. Keelveedhi and P. Rogaway. Efficient garbling from a fixed-key blockcipher. In S&P’13 pages 478–492. IEEE 2013.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 436 289 18
PDF Downloads 251 175 11