Cite

Investigation of the embedded chains in soil starts to play an important role in understanding the structural performance of mooring system, when the embedded anchors will be employed to sustain large loads with the gradually growth of installation depth of offshore aquaculture farm. The aim of this study is to investigate the dynamic response of mooring line considering the influence of embedded chains in clay soil for net cage system. Lumped-mass method is used to establish the numerical model for evaluating the performance of mooring line with embedded chains. To validate the numerical model, comparisons of numerical results with the analytical formulas and the experimental data are conducted. A good agreement of the profile and the tension response is obtained. Then, the effect of embedded chains on the static and dynamic response of mooring line is evaluated, and the dynamic behavior of mooring system considering embedded chains for net cage system is investigated. The results indicate that the soil resistance on embedded chains should be included to predict the mooring line development and the load on the embedded anchors in the numerical simulations. An appropriate safety factor should be included if employing the simplified model Case C at the initial design phase. And the effect of embedded chains on the holding capacity of embedded anchors in single-point mooring system for single net cage cannot be negligible during the design and operation phases. Consequently, it is profound to take into account the interaction of embedded chains and soil for accurately predicting the reliability of mooring system for fish cage.

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences