Numerical Simulations of Sea Ice Conditions in the Baltic Sea for 2010–2016 Winters Using the 3D CEMBS Model

Open access

Abstract

Sea ice conditions in the Baltic Sea during six latest winters – 2010/2011 to 2015/2016 are analysed using coupled ice–ocean numerical model 3D CEMBS (3D Coupled Ecosystem Model of the Baltic Sea). Simulation results are compared with observations from monitoring stations, ice charts and satellite data. High correlation between model results and observations has been confirmed both in terms of spatial and temporal approach. The analysed period has a high interannual variability of ice extent, the number of ice days and ice thickness. Increasing number of relatively mild winters in the Northern Europe directly associated with climate change results in reduced ice concentration in the Baltic Sea. In this perspective, the implementation and development of the sea ice modelling approach (in addition to standard monitoring techniques) is critical to assess current state of the Baltic Sea environment and predict possible climate related changes in the ecosystem and their influence for human marine–related activities, such as fishery or transportation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Koslowski G. Loewe P. (1994). The western Baltic Sea ice season in terms of mass–related severity index: 1879–1992. Tellus 46A 66–74.

  • 2. Tinz B. (1996). On the relation between annual maximum extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica 32 319–341.

  • 3. Pirazzini R. Vihma T. Granskog M.A. Cheng B. (2006). Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Annals of Glaciology 44 7–14.

  • 4. BACC II Author Team. (2015). Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Berlin: Springer.

  • 5. Granskog M. Kaartokallio H. Kuosa H. Thomas D.N. Vainio J. (2006). Sea ice in the Baltic Sea – A rewiev. Estuarine Coastal and Shelf Science 70 145–160.

  • 6. Leppäranta M. Myrberg K. (2009). Physical Oceanography of the Baltic Sea. Berlin Heideberg: Springer–Verlag.

  • 7. BACC Author Team. (2008). Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Berlin: Springer.

  • 8. Vihma T. Haapala J. (2009). Geophysics of sea ice in the Baltic Sea: A review. Progress in Oceanography 80 129–148.

  • 9. Döscher R. Willén U. Jones C. Rutgersson A. Meier H.E.M. Hansson U. Graham L.P. (2002). The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environment Research 7 183–192.

  • 10. Lehmann A. Lorenz P. Jacob D. (2004). Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophysical Research Letters 31(21).

  • 11. Dieterich C. Schimanke S. Wang S. Väli G. Liu Y. Hordoir R. Axell L. Höglund A. Meier H.E.M. (2013). Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO. SMHI Report Oceanography 47.

  • 12. Pham T.V. Brauch J. Dieterich C. Frueh B. Ahrens B. (2014). New coupled atmosphere – ocean – ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas. Oceanologia 56(2) 167–189.

  • 13. Pemberton P. Löptien U. Hordoir R. Höglund A. Schimanke S. Axell L. Haapala J. (2017). Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea. Geosci. Model Dev. 10 3105–3123.

  • 14. Löptien U. Axell L. (2014). Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea. The Cryosphere 8 2409–2418.

  • 15. Goerlandt F. Montewka J. Zhang W. Kujala P. (2016). An analysis of ship escort and convoy operations in ice conditions. Safety Sci. 95 195–209.

  • 16. Haapala J. Meier H.E.M. Rinne J. (2001). Numerical Investigations of Future Ice Conditions in the Baltic Sea. AMBIO 30 237–244.

  • 17. Meier H.E.M. (2006). Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim. Dynam. 27 39–68.

  • 18. Eilola K. Mårtensson S. Meier H.E.M. (2013). Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry Geophys. Res. Lett. 40 149–154.

  • 19. Meier H.E.M. Döscher R. Halkka A. (2004). Simulated distributions of Baltic Sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal. Ambio 33 249–256.

  • 20. Moore J.K. Doney S.C. Kleypas J.A. Glover D.M. Fung I.Y. (2002). An intermediate complexity marine ecosystem model for the global domain. Deep Sea Research Part II 49(1–3) 403–462.

  • 21. Smith R. Gent P. (2002). Reference manual for the Parallel Ocean Program (POP) Los Alamos unclassified report LA–UR–02–2484.

  • 22. Hunke E.C. Dukowicz J.K. (1997). An Elastic–Viscous–Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography 27(9) 1849–1867.

  • 23. Dzierzbicka–Głowacka L. Jakacki J. Janecki M. and Nowicki A. (2013a). Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia 55(3) 519–541.

  • 24. Dzierzbicka–Głowacka L. Jakacki J. Janecki M. and Nowicki A. (2013b). Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia 55(3) 543–572.

  • 25. Nowicki A. Dzierzbicka–Głowacka L. Janecki M. Kałas M. (2015). Assimilation of the satellite SST data in the 3D CEMBS model. Oceanologia 57(1) 17–24.

  • 26. Nowicki A. Janecki M. Dzierzbicka–Głowacka L. Darecki M. Piotrowski P. (2016). The Use of Satellite Data in the Operational 3D Coupled Ecosystem Model of the Baltic Sea (3D CEMBS). Polish Maritime Research 23(1) 20–24.

  • 27. Woźniak B. Bradtke K. Darecki M. Dera J. Dudzińska–Nowak J. Dzierzbicka–Głowacka L. Ficek D. Furmańczyk K. et al. (2011a). SatBałtyk – a Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 1: Assumptions scope and operating range. Oceanologia 53(4) 897–924.

  • 28. Woźniak B. Bradtke K. Darecki M. Dera J. Dudzińska–Nowak J. Dzierzbicka–Głowacka L. Ficek D. Furmańczyk K. et al. (2011b). SatBałtyk – a Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 2: Practical applicability and preliminary results. Oceanologia 53(4) 925–958.

  • 29. Krężel A. Bradtke K. Herman A. (2015). Use of Satellite Data in Monitoring of Hydrophysical Parameters of the Baltic Sea Environment. Polish Maritime Research 22(3) 36–42.

  • 30. Karvonen J. Simila M. (2007). SAR–Based Estimation of the Baltic Sea Ice Motion. Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS 2605–2608.

  • 31. Donlon C.J. Martin M. Stark J. Roberts–Jones J. Fiedler E. Wimmer W. (2012). The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of Environment 116 140–158.

  • 32. HELCOM. (1996). Third Periodic Assessment of the State of the Marine Environment of the Baltic Sea 1989–1993. Background document. Baltic Sea Environment Proceedings 64B.

  • 33. HELCOM. (2010). Maritime Activities in the Baltic Sea – An integrated thematic assessment on maritime activities and response to pollution at sea in the Baltic Sea Region. Baltic Sea Environment Proceedings 123.

  • 34. Parkinson C.L. Cavalieri D.J. Gloersen P. Zwally H.J. Comiso J.C. (1999). Arctic sea ice extents areas and trends 1978–1996. Journal of Geophysical Research 104(C9) 20837–20856.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.214
5-year IMPACT FACTOR: 1.086

CiteScore 2018: 1.48

SCImago Journal Rank (SJR) 2018: 0.391
Source Normalized Impact per Paper (SNIP) 2018: 1.141

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 156 24
PDF Downloads 217 137 14