Sensitivity of the Game Control of Ship in Collision Situations

Open access

Abstract

The paper introduces the application of the theory of deterministic sensitivity control systems for sensitivity analysis taking place in game control systems of moving objects, such as ships. The sensitivity of parametric model of game ship control process and game control in collision situations - sensitivity to changes in its parameters have been presented. First-order and k-th order sensitivity functions of parametric model of the process and game control are described. The structure of the game ship control system in collision situations and the mathematical model of game control process in the form of state equations are given. Characteristics of sensitivity functions of the model and game ship control process on the base of computer simulation in Matlab/Simulink software have been presented. At the end are given proposals regarding the use of sensitivity analysis to practical synthesis of computer-aided system navigator in potential collision situations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Astrom K.J.: Model uncertainty and robust control. Lecture notes on iterative identification and control design. Lund Institut of Technology Sweden 2000 pp. 63-100.

  • 2. Baba N. Jain L.C.: Computational intelligence in games. Physica-Verlag New York 2001.

  • 3. Basar T. Olsder G.J.: Dynamic non-cooperative game theory. Siam Philadelphia 2013.

  • 4. Bist D.S.: Safety and security at sea. Butterworth Heinemann Oxford-New Delhi 2000.

  • 5. Bole A. Dineley B. Wall A.: Radar and ARPA manual. Elsevier Amsterdam-Tokyo 2006.

  • 6. Cahill R.A.: Collisions and their causes. The Nautical Institute London 2002.

  • 7. Cruz J.B.: Feedback systems. Mc Graw-Hill Book Company New York 1972.

  • 8. Dorf R.C. Bishop R.H.: Modern control systems. Addison- Wesley California 1998.

  • 9. Engwerda J.C.: LQ dynamic optimization and differential games. John Wiley and Sons West Sussex 2005.

  • 10. Eslami M.: Theory of sensitivity in dynamic systems. Springer-Verlag Berlin 1994.

  • 11. Fossen T.I.: Marine craft hydrodynamics and motion control. Wiley Trondheim 2011.

  • 12. Fujarewicz K.: Structural sensitivity analysis of systems with delay (in Polish). XVIII Krajowa Konferencja Procesów Dyskretnych Zakopane 2014.

  • 13. Gierusz W. Lebkowski A.: The researching ship “Gdynia” Polish Maritime Research Vol. 19 No. 74 2012 pp. 11-18.

  • 14. Gluver H. Olsen D.: Ship collision analysis. Balkema Rotterdam 1998.

  • 15. Isaacs R.: Differential games. John Wiley and Sons New York 1965.

  • 16. Lazarowska A.: Safe ship control method with the use of ant colony optimization. Solid State Phenomena Vol. 210 2014 pp. 95-101.

  • 17. Lisowski J.: Comparison of dynamic games in application to safe ship control. Polish Maritime Research Vol. 21 No. 3 2014 pp. 3-12.

  • 18. Miller A. Rybczak M.: Model predictive control algorithm verification with the use of real time xPC target platform. Joint Proceedings No. 84 2014 pp. 73-84.

  • 19. Mohamed-Seghir M.: The branch-and-bound method genetic algorithm and dynamic programming to determine a safe ship trajectory in fuzzy environment. 18th International Conference in Knowledge Based and Intelligent Information and Engineering Systems. Procedia Computer Science No. 35 2014 pp. 634-643.

  • 20. Modarres M.: Risk analysis in engineering. Taylor and Francis Group Boca Raton 2006.

  • 21. Nisan N. Roughgarden T. Tardos E. Vazirani V.V.: Algorithmic game theory. Cambridge University Press New York 2007 p. 717-733.

  • 22. Nise N.S.: Control systems engineering. John Wiley and Sons New York 2015.

  • 23. Nise N.S.: Control systems engineering. Wiley California 2015.

  • 24. Osborne M.J.: An introduction to game theory. Oxford University Press New York 2004.

  • 25. Rosenwasser E. Yusupov R.: Sensitivity of automatic control systems. CRC Press Boca Raton 2000.

  • 26. Sanchez-Pena R.S. Sznaier M.: Robust systems theory and applications. Wiley New York 1998.

  • 27. Skogestad S. Postlethwaite I.: Multivariable feedback control. Wiley Chichester 2005.

  • 28. Straffin P.D.: Game theory and strategy (in Polish). Scholar Warszawa 2001.

  • 29. Szlapczynski R.: Evolutionary sets of safe ship trajectories with speed reduction manoeuvres within traffic separation schemes. Polish Maritime Research Vol. 81 No 1 2014 pp. 20-27.

  • 30. Tomera M.: Dynamic positioning system for a ship on harbour manoeuvring with different observers. Experimental results. Polish Maritime Research Vol. 83 No. 3 2014 pp. 13-21.

  • 31. Wierzbicki A.: Models and sensitivity of control systems (in Polish). WNT Warszawa 1977.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 1,214
5-year IMPACT FACTOR: 1,086


CiteScore 2018: 1.48

SCImago Journal Rank (SJR) 2018: 0.391
Source Normalized Impact per Paper (SNIP) 2018: 1.141

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 60 3
PDF Downloads 87 56 2