Additive Manufacturing of Steel and Copper Using Fused Layer Modelling: Material and Process Development

J. V. Ecker 1 , K. Dobrezberger 1 , J. Gonzalez-Gutierrez 2 , M Spoerk 2 , Ch. Gierl-Mayer 1 , and H. Danninger 1
  • 1 Technische Universität Wien, , Wien, Austria
  • 2 , Leoben, Austria

Abstract

Fused Layer Modelling (FLM) is one out of several material extrusion (ME) additive manufacturing (AM) methods. FLM usually deals with processing of polymeric materials but can also be used to process metal-filled polymeric systems to produce metallic parts. Using FLM for this purpose helps to save costs since the FLM hardware is cheap compared to e.g. direct metal laser processing hardware, and FLM offers an alternative route to the production of metallic components.

To produce metallic parts by FLM, the methodology is different from direct metal processing technologies, and several processing steps are required: First, filaments consisting of a special polymer-metal composition are produced. The filament is then transformed into shaped parts by using FLM process technology. Subsequently the polymeric binder is removed (”debinding”) and finally the metallic powder body is sintered. Depending on the metal powder used, the binder composition, the FLM production parameters and also the debinding and sintering processes must be carefully adapted and optimized.

The focal points of this study are as following:

1. To confirm that metallic parts can be produced by using FLM plus debinding and sintering as an alternative route to direct metal additive manufacturing.

2. Determination of process parameters, depending on the used metal powders (steel and copper) and optimization of each process step.

3. Comparison of the production paths for the different metal powders and their debinding and sintering behavior as well as the final properties of the produced parts.

The results showed that both materials were printable after adjusting the FLM parameters, metallic parts being produced for both metal powder systems. The production method and the sintering process worked out well for both powders. However there are specific challenges in the sintering process that have to be overcome to produce high quality metal parts. This study serves as a fundamental basis for understanding when it comes to the processing of steel and copper powder into metallic parts using FLM processing technology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., Holzer, C.: Materials, vol. 11, 2018, doi:10.3390/ma11050840

  • [2] German, RM., Bose, A.: Injection molding of metals and ceramics. Princeton NJ : MPIF, 1997

  • [3] Chacón, JM., Caminero, MA., García-Plaza, E., Núñez, PJ.: Materials & Design, vol. 124, 2017, p. 143, doi:10.1016/j.matdes.2017.03.065

  • [4] Heller, BP., Smith, DE., Jack, DA.In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, Texas, 2015

  • [5] Kuo, C-C., Mao, R-C.: Materials and Manufacturing Processes, vol. 31, 2015, p. 1113, doi:10.1080/10426914.2015.1090594

  • [6] Ahn, SH., Montero, M., Odell, D., Roundy, S., Wright, PK.: Rapid Prototyping Journal, vol. 8, 2002, p. 248, doi:10.1108/13552540210441166

  • [7] Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A.: Procedia Manufacturing, vol. 10, 2017, p. 791, doi:10.1016/j.promfg.2017.07.079

  • [8] Álvarez, K., Lagos, RF., Aizpun, M.: Ing. Inv., vol. 36, 2016, p. 110, doi:10.15446/ing.investig.v36n3.56610

  • [9] Bellehumeur, C., Li, L., Sun, Q., Gu, P.: Journal of Manufacturing Processes, vol. 6, 2004, p. 170, doi:10.1016/S1526-6125(04)70071-7

  • [10] Carneiro, OS., Silva, AF., Gomes, R.: Materials & Design, vol. 83, 2015, p. 768, doi:10.1016/j.matdes.2015.06.053

  • [11] Elkins, K., Nordby, H., Janak, C., Gray, RW., Bøhn, HH., Baird, DG. In: Proc. 8th. Solid Freeform Fabrication Symposium. The University of Texas, Austin, August 11-13 1997, p. 441

  • [12] Rahim, TNAT., Abdullah, AM., Akil, H., Mohamad, D., Rajion, ZA.: Express Polym. Lett., vol. 11, 2017, p. 963, doi:10.3144/expresspolymlett.2017.92

  • [13] Shojib Hossain, M., Espalin, D., Ramos, J., Perez, M., Wicker, R.: J. Manuf. Sci. Eng., vol. 136, 2014, p. 61002, doi:10.1115/1.4028538

  • [14] Masood, SH., Song, WQ.: Materials & Design, vol. 25, 2004, p. 587, doi:10.1016/j.matdes.2004.02.009

  • [15] Giberti, H., Strano, M., Annoni, M., Yuan, Y., Menon, L., Xu, X.: MATEC Web of Conferences, vol. 43, 2016, p. 3003, doi:10.1051/matecconf/20164303003

  • [16] Mireles, J., Espalin, D., Roberson, D., Zinniel, B., Medina, F., Wicker, R. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas, 2012, p. 836

  • [17] Venkataraman, N., Rangarajan, S., Matthewson, MJ., Safari, A., Danforth, SC., Yardimci, A., Guceri, SI. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas, 9-11 August, 1999

  • [18] Wu, G., Langrana, NA., Rangarajan, S., McCuiston, R., Sadanji, R., Danforth, SC., Safari, A. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas, 9-11 August, 1999, p. 775

  • [19] Wu, G., Langrana, NA., Sadanji, R., Danforth, S.: Materials & Design, vol. 23, 2002, p. 97, doi:10.1016/S0261-3069(01)00079-6

  • [20] Bandyopadhyay, A., Panda, RK., Janas, VF., Agarwala, MK., Danforth, SC., Safari, A.: Journal of the American Ceramic Society, vol. 80, 1997, p. 1366

  • [21] McNulty, TF., Mohammadi, F., Bandyopadhyay, A., Shanefield, DJ., Danforth, SC., Safari, A.: Rapid Prototyping Journal, vol. 4, 1998, p. 144, doi:10.1108/13552549810239012

  • [22] Venkataraman, N., Rangarajan, S., Matthewson, MJ., Harper, B., Safari, A., Danforth, SC., Wu, G., Langrana, N., Guceri, SI., Yardimci, A.: Rapid Prototyping Journal, vol. 6, 2000, p. 244, doi:10.1108/13552540010373344

  • [23] Agarwala, MK., Weeren, R. van, Bandyopadhyay, A., Safari, A., Danforth, SC., Priedeman, WR. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas. Eds. DL. Bourell, et al., 1996

  • [24] Agarwala, MK., Weeren, R. van, Bandyopadhyay, A., Whalen, PJ., Safari, A., Danforth, SC. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas. Eds. DL. Bourell, et al., 1996

  • [25] Agarwala, MK., Jamalabad, VR., Langrana, NA., Safari, A., Whalen, PJ., Danforth, SC.: Rapid Prototyping Journal, vol. 2, 1996, p. 4, doi:10.1108/13552549610732034

  • [26] Allahverdi, M., Danforth, SC., Jafari, MA., Safari, A.: Journal of the European Ceramic Society, vol. 21, 2001, p. 1485, doi:10.1080/00150190108225177

  • [27] Atisivan, R., Bose, S., Bandyopadhyay, A.: Journal of the American Ceramic Society, vol. 84, 2001, p. 221, doi:10.1111/j.1151-2916.2001.tb00635.x

  • [28] Bandyopadhyay, A., Das, K., Marusich, J., Onagoruwa, S.: Rapid Prototyping Journal, vol. 12, 2006, p. 121, doi:10.1108/13552540610670690

  • [29] Iyer, S., McIntosh, J., Bandyopadhyay, A., Langrana, N., Safari, A., Danforth, SC., Clancy, RB., Gasdaska, C., Whalen, PJ.: Int J Applied Ceramic Technology, vol. 5, 2008, p. 127, doi:10.1111/j.1744-7402.2008.02193.x

  • [30] Jafari, MA., Han, W., Mohammadi, F., Safari, A., Danforth, SC., Langrana, N.: Rapid Prototyping Journal, vol. 6, 2000, p. 161, doi:10.1108/13552540010337047

  • [31] McNulty, TF., Shanefield, DJ., Danforth, SC., Safari, A.: Journal of the American Ceramic Society, vol. 82, 1999, p. 1757, doi:10.1111/j.1151-2916.1999.tb01996.x

  • [32] Pistor, CM.: Adv. Eng. Mater., vol. 3, 2001, p. 418, doi:10.1002/1527-2648(200106)3:6<418:AID-ADEM418>3.0.CO;2-Q

  • [33] Rangarajan, S., Qi, G., Venkataraman, N., Safari, A., Danforth, SC.: Journal of the American Ceramic Society, vol. 83, 2000, p. 1663, doi:10.1111/j.1151-2916.2000.tb01446.x

  • [34] Lengauer, W., Duretek, I., Schwarz, V., Kukla, C., Kitzmantel, M., Neubauer, E., Lieberwirth, C., Morrison, V. In: Euro PM2018 Proceedings. EURO PM2018 Congress & Exhibition. Bilbao, Spain, 14. - 18. October. Bellstone : EPMA, 2018 p. 1

  • [35] Bai, Y., Williams, CB.: Rapid Prototyping Journal, vol. 21, 2015, p. 177, doi:10.1108/RPJ-12-2014-0180

  • [36] Hwang, KS., Hsieh, YM.: Metall Mater Trans A, vol. 27, 1996, p. 245, doi.org/10.1007/BF02648403

  • [37] Danninger, H., Frauendienst, G., Streb, K., Ratzi, R.: Dissolution of different graphite grades during sintering of PM steels, 2001, 67, p. 72

  • [38] Danninger, H., Gierl, C.: Processes in PM steel compacts during the initial stages of sintering, 2001, 67, p. 49

  • [39] Danninger, H., Gierl, C., Kremel, S., et al.: Degassing and deoxidation processes during sintering of unalloyed and alloeyd pm stells, 2002, 2, p. 125

  • [40] Azadbeh, M., Danninger, H., Gierl-Mayer, C.: Particle rearrangement during liquid phase sintering of Cu – 20Zn and Cu – 10Sn – 10Pb prepared from prealloyed powder, 2013, 56, p. 2, doi.org/10.1179/0032589913Z.000000000138

  • [41] Oro Calderon, R. de, Campos, M., Gierl-Mayer, C., Danninger, H., Torralba, JM.: Metallurgical and Materials Transactions A, vol. 46, 2015, p. 1349

  • [42] Butković, S., Oruč, M., Šarić, E., Mehmedović, M.: Mater Tehnol, vol. 46, 2012, p. 185

  • [43] Slotwinski, JA., Garboczi, EJ., Hebenstreit, KM.: J Res Natl Inst Stand Technol, vol. 119, 2014, p. 494, doi.org/10.6028/jres.119.019

  • [44] Hairer, F., Karelova, A.: Etching techniques for the microstructural characterization of complex phase steels by light microscopy, 2008, p. 50

  • [45] Gierl, C., Danninger, H., Avakemian, A., Synek, J., Sattler, J., Zlatkov, BS., Maat, J., Arzl, A., Neubing, HC.: Powder Injection Moulding International, vol. 6, 2012, no. 4, p. 65

  • [46] Zlatkov, BS., Griesmayer, E., Loibl, H., Aleksić, OS., Danninger, H., Gierl, C., Lukić, LS.: Science of Sintering, vol. 40, 2008, p. 79, https://doi.org/10.2298/SOS0801077Z

  • [47] Schatt, W.: Sintervorgänge. Düsseldorf : VDI-Verlag, 1992

OPEN ACCESS

Journal + Issues

Search