Polymorphs of Neodymium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

H. Bruncková 1 , Ľ. Medvecký 1 , E. Múdra 1 , and A. Kovalčiková 1
  • 1 Institute of Materials Research of Slovak Academy of Sciences, , 040 01, Košice

Abstract

Neodymium niobate NdNbO4 (NNO) and tantalate NdTaO4 (NTO) thin films (~100 nm) were prepared by sol-gel/spin-coating process on Pb(Zr0.52Ti0.48)O3/Al2O3 substrates with annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The XRD results of NNO and NTO films confirmed tetragonal T-NdNbO4 and T-NdTaO4 phases, respectively, with traces of monoclinic MNdNbO4 and M´-NdTaO4. The surface morphology and topography were investigated by SEM and AFM analysis. NTO was smoother with roughness 5.24 nm in comparison with NNO (6.95 nm). In the microstructure of NNO, small spherical (~ 20-50 nm) T-NdNbO4 and larger needle-like particles (~100 nm) of M-NdNbO4 phase were observed. The compact clusters composed of fine spherical T-NdTaO4 particles (~ 50 nm) and cuboidal M´-NdTaO4 particles (~ 100 nm) were found in NTO. The results of this work can contribute to formation of different polymorphs of films for the application in environmental electrolytic thin film devices.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mather, SA., Davies, PK.: J. Am. Ceram. Soc., vol. 78, 1995, p. 2737.

  • [2] Mei, QJ., Li, CY., Guo, JD., Zhao, LP., Wu, HT.: Ceram. Int., vol. 41, 2015, p. 907.

  • [3] Loiko, PA., Dymshits, OS., Alekseeva, IP., Zhilin, AA., Tsenter, MY., Vilejshikova, EV., Bogdanov, KV., Mateos, XK., Yumashev, KV.: J. Luminesc., vol. 179, 2016, p. 64.

  • [4] Siqueira, KPF., Carmo, AP., Bell, MJV., Dias, A.: J. Luminesc., vol. 138, 2013, p. 133.

  • [5] Ferrara, Ch., Mancini, A., Ritter, C., Malavasi, L., Tealdi, C.: J. Mater. Chem. A, vol. 3, 2015, p. 22258.

  • [6] Siqueira, KPF., Dias, A.: Mater. Res., vol. 17, 2014, p. 167.

  • [7] Titova, YA., Sych, AM., Sokolov, AN., Kapshuk, AA., Markiv, VY., Belyavina, NM.: J. Alloys Compd., vol. 311, 2000, p. 252.

  • [8] Zhang, P., Song, Z., Wang, Y., Han, Y., Dong, H., Li, L.: J. Alloys Compd., vol. 581, 2013, p. 741.

  • [9] Song, Z., Zhang, P., Wang, Y., Li, L.: J. Alloys Compd., vol. 583, 2014, p. 546.

  • [10] Hirano, M., Dozono, H.: Mater. Res. Bull., vol. 50, 2014, p. 213.

  • [11] Siqueira, KPF., Lima, PP., Ferreira, RAS., Carlos, LD., Bittar, EM., Matinaga, FM., Paniago, R., Moreira, RL., Dias, A.: J. Phys. Chem. C, vol. 119, 2015, p. 17825.

  • [12] Lu, Y., Tang, X., Yan, L., Li, K., Liu, X., Shang, M., Li, Ch., Lin, J.: J. Phys. Chem. C, vol. 117, 2013, p. 21792.

  • [13] Peng, H., Zhang, Y., Zhou, Y. C.: Prog. Nat. Sci.: Mater. Int., vol. 22, 2012, p. 219.

  • [14] Pontes, DSL., Pontes, FM., Pereira-da-Silva, MA., Zampieri, M., Chiquito, AJ., Pizani, PS., Longo, E.: Ceram. Int., vol. 40, 2014, p. 4085.

  • [15] Velu, G., Haccart, T., Jaber, B., Re`miens, D.: J. Vac. Sci. Technol. A: Vac. Surf. Films, vol. 16, 1998, p. 2442.

  • [16] Li, DH., Lee, ES., Chung, HW., Lee, SY.: Appl. Surf. Sci., vol. 252, 2006, p. 4541.

  • [17] Brunckova, H., Medvecky, L., Briancin, J., Durisin, J., Mudra, E., Sebek, M., Kovalcikova, A., Sopcak, T.: Mater. Lett., vol. 165, 2016, p. 239.

  • [18] Brunckova, H., Medvecky, L., Briancin, J., Saksl, K.: Ceram. Int., vol. 30, 2004, p. 453.

  • [19] Xiao, X., Yan, B.: J. Mater. Res., vol. 23, 2008, p. 679.

  • [20] Wang, J., Chong, X., Zhou, R., Feng, J.: Scripta Mater., vol. 126, 2017, p. 24.

  • [21] Siqueira, KPF., Dias, A.: Mater. Res., vol. 17, 2014, p. 167.

  • [22] Siqueira, KPF., Moreira, RL., Dias, A.: Chem. Mater., vol. 22, 2010, p. 2668.

  • [23] Yue, J., Leung, M., Haemmerle, E., Hodgson, M., Li, G., Gao, W.: J. Alloys Compd., vol. 470, 2009, p. 465.

  • [24] Tsunekawa, S., Takei, H.: Phys. Status Solidi A, vol. 50, 1978, p. 695.

  • [25] Kuroiwa, Y., Nozawa, K., Ikegami, J., Shobu, T., Noda, Y.: J. Korean Phys. Soc., vol. 32, 1998, p. 84.

OPEN ACCESS

Journal + Issues

Search