What Will Be the Future of Powder Metallurgy?

Open access

Abstract

Traditionally, powder metallurgy has been based on two major industrial sectors – ferrous precision parts and hardmetals. Both of them relied heavily on the automotive industry, with focus on internal combustion engines. Today, there is an increasing trend towards alternative drivetrain systems, and powder metallurgy faces the challenge to find new applications to replace those lost with the decrease of classical internal combustion drives. In this presentation it is shown that the main strength of powder metallurgy lies in its enormous flexibility regarding materials, geometries, processing and properties. This enables PM to adapt itself to changing requirements in a changing industrial environment. Examples given are PM parts in alternative drivetrain systems, new alloying concepts and processing routes offering distinct advantages. With hardmetals, innovative microstructures as well as sophisticated coatings offer increased lifetime, applications ranging from metalworking to rockdrilling and concrete cutting. A particularly wide area is found in functional materials which range from components for high power switches to such for fuel cells. Soft and hard magnets are accessible by PM with particularly good properties, PM having in part exclusivity in that respect, such as for NdFeB superhard magnets as well as soft magnetic composites (SMCs). Metal injection moulding (MIM) is gaining further ground, e.g. in the medical area which is a fast-growing field, due to demographic effects. Finally, most additive manufacturing techniques are powder based, and here, the knowledge in powder handling and processing available in the PM community is essential for obtaining stable processes and reliable products. Conclusively it can be stated that PM is on the way to fully exploit its potential far beyond its traditional areas of applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Williams B.: Powder Metall. Review vol. 5 2016 no. 4 p. 47

  • [2] Silbereisen H.: Powder Metall. Int. vol. 16 1984 no. 2 p. 65

  • [3] Whittaker D.: Powder Metall. Review vol. 4 2015 no. 2 p. 35

  • [4] Brookes KJA.: Hardmetals and other Hard Materials. 2nd ed. East Barnet UK : Int. Carbide Data 1992

  • [5] Schubert WD. Lassner E. Boehlke W.: Cemented carbides – a success story. London : International Tungsten Industries Association 2010

  • [6] Danninger H. De Oro Calderon R. Gierl-Mayer C. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Online 2017 p. 1

  • [7] Kotthoff G. Leupold B. Janzen V. In: Pulvermetallurgie in Wissenschaft und Praxis. Vol. 33. Eds. H. Kolaska H. Danninger B. Kieback. Hagen : Fachverband Pulvermetallurgie 2017 p. 185

  • [8] Flodin A.: Powder Metall. Review vol. 6 2017 no. 2 p. 41

  • [9] Dlapka M. Müller A. In: Pulvermetallurgie in Wissenschaft und Praxis. Vol. 33. Eds. H. Kolaska H. Danninger B. Kieback. Hagen : Fachverband Pulvermetallurgie 2017 p. 207

  • [10] Danninger H. Gierl C.: Sci. Sintering vol. 40 2008 no. 1 p. 33

  • [11] De Oro Calderon R. Gierl-Mayer C. Danninger H.: Journal of Thermal Analysis and Calorimetry vol. 127 2017 no. 1 p. 91

  • [12] Gierl-Mayer C. De Oro Calderon R. Danninger H.: JOM vol. 68 2016 no. 3 p. 920

  • [13] De Oro Calderon R. Gierl-Mayer C. Danninger H.: Powder Metallurgy vol. 59 2016 no. 1 p. 31

  • [14] Jones PK. Buckley-Golder K. Sarafinchan D.: Int. J. Powder Metallurgy vol. 34 1998 no. 1 p. 26

  • [15] Dlapka M. Gierl C. Danninger H. Altena H. Stetina G. Orth P. In: Proceedings PM2010 Powder Metallurgy World Congress &Exhibition Florence. Vol. 2. Shrewsbury : European Powder Metallurgy Association 2010 p. 459

  • [16] Mulin H. Giraud Y. Since JJ.: Powder Metall. Review vol. 3 2014 no. 2 p. 61

  • [17] Schubert WD. Fugger M. Wittmann B. Useldinger R.: Int. J. Refr. Metals &Hard Mater. vol. 49 2015 p. 110

  • [18] Schubert WD.: Keramische Zeitschrift 2015 no. 7 p. 365

  • [19] Garcia J. et al.: Adv. Eng. Mater. vol. 12 2010 p. 929

  • [20] Johnson PK.: Int. J. Powder Metall. vol. 44 2008 no. 4 p. 43

  • [21] Leichtfried G. In: Landolt-Börnstein New Series VIII/2A2 “Refractory Hard and Intermetallic Materials”. Chapter 12. Berlin-Heidelberg : Springer 2002 p. 1

  • [22] Haydn M. Ortner K. Franco T. Menzler NH. Venskutonis A. Sigl LS.: Powder Metall. vol. 56 2013 no. 5 p. 382

  • [23] German RM.: Adv. Powder Metall. &Partic. Mater. Part 4. Princeton NJ : MPIF 2011

  • [24] Johnson PK.: Int. J. Powder Metall. vol. 52 2016 no. 1 p. 5

  • [25] Gierl C. et al.: Powder Injection Moulding International vol. 6 2012 no. 4 p. 65

  • [26] Schoppa A. Delarbre P. In: Pulvermetallurgie in Wissenschaft und Praxis. Vol. 29. Ed. H. Kolaska. Hagen : Fachverband Pulvermetallurgie 2013 p. 231

  • [27] Dougan M.: Powder Metall. Review vol. 4 2015 no. 3 p. 41

  • [28] Schoppa A. Delabre P. Holzmann E. Silg M. In: Proc. IEEE EDPC Conf. Nuremberg 2013

  • [29] Narasimhan KS.: Powder Metall. Review vol. 6 2017 no. 4 p. 47

  • [30] Burkhardt C. In: Proc. EuroPM2017 Milan. Shrewsbury : EPMA 2017

  • [31] Isaza JF. Aumund-Kopp C.: Powder Metall. Review vol. 3 2014 no. 2 p. 41

  • [32] Anonymous: Metal Additive Manuf. vol. 2 2016 no. 2 p. 32

  • [33] Bhate D.: Metal Additive Manuf. vol. 3 2017 no. 3 p. 81

  • [34] Hryha E. Shvab R. Gruber H. Leicht A. Nyborg L. In: Proc. EuroPM2017 Milano. Shrewsbury : EPMA 2017 paper no. 3687558

  • [35] Whittaker D.: Metal Additive Manuf. vol. 3 2017 no. 4 p. 83

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 240 11
PDF Downloads 177 177 8