The Role of the Atmosphere on Boron-Activated Sintering of Ferrous Powder Compacts

Open access

Abstract

Boron has been known to activate densification during sintering of ferrous powder compacts, though with risk of embrittlement. In the present study, specimens Fe-B and Fe-C-B prepared from standard atomized iron powder with addition of ferroboron Fe-21%B were sintered in different atmospheres, and the resulting microstructures and properties were studied. It showed that the activating effect of boron is observed during sintering in argon and in hydrogen while sintering in N2 containing atmospheres results in rapid deactivation of boron, through formation of stable BN. In hydrogen atmosphere, surface deboronizing was observed to considerable depth. Ar is chemically inert, but Ar trapped inside closed pores tends to inhibit further densification. The impact energy data indicated that the embrittling effect of boron is enhanced significantly by presence of carbon. In the fracture surfaces, transgranular cleavage fracture can be observed both at very low and high impact energy values.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Benesovsky F. Hotop W. Frehn F.: Planseeberichte Pulvermet. vol. 3 1955 p. 57

  • [2] Okamoto H.: Phase Diagrams of Binary Iron Alloys. Materials Park OH : ASM 1993

  • [3] Madan DS. German RM. James WB.: Progress in Powder Metall. vol. 42 1986 p. 267

  • [4] Dudrova E. et al.: Kovove Materialy vol. 5 1995 p. 95

  • [5] Selecká M. Šalak A. Danninger H.: J.Mater.Process.Technol. vol. 143-144 2003 p. 910

  • [6] Molinari A. Straffelini G. Pieczonka T. Kazior J.: Int. J. Powder Metall. vol. 34 1998 p. 21

  • [7] Orth P. Danninger H. Bouvier A. Ratzi R. In: Proc. PM2004 Powder Metallurgy World Congress Vienna. Eds. H. Danninger R. Ratzi. Vol. 3. Shrewsbury : EPMA 2004 p. 307

  • [8] Gierl-Mayer C. Zbiral J. Danninger H. Ratzi R. In: Proc. Euro PM2014 Salzburg. Shrewsbury : EPMA 2014 Paper-Nr. EP14066

  • [9] Danninger H. Jangg G. Giahi M.: Z.Werkstofftechnik vol. 19 1988 p. 205

  • [10] Momeni M. Gierl C. Danninger H. Avakemian A.: Powder Metall. vol. 55 2012 no. 1 p. 54

  • [11] Momeni M. Gierl C. Danninger H. Ul Mohsin I. Arvand A.: Powder Metall. vol. 55 2012 no. 3 p. 212

  • [12] Liu J. Cardamone A. Potter TJ. German RM. Semel FJ.: Powder Metall. vol. 43 2000 no. 1 p. 57

  • [13] Liu J. German RM. Cardamone A. Potter T. Semel FJ.: Int. J. Powder Metall. vol. 37 2001 no. 5 p. 39

  • [14] Tojal C. Gomez-Acebo T. Castro F.: Mat.Sci.Forum vol. 534-536 2007 p. 661

  • [15] Selecká M. Bureš R. In: Proc. Conf. Metallography 1998 IMR Kosice p. 122

  • [16] Gierl C.: PhD thesis. Wien : TU 1999

  • [17] Lehr P.: C.R.Acad.Sci.France vol. 242 1956 p. 1172

  • [18] Danninger H.: Powder Metall. Progress vol. 3 2003 p. 75

  • [19] Kuroki H. Suzuki HY.: Mater. Transactions vol. 47 2006 p. 2449

  • [20] Jaliliziyaeian M. Gierl C. Danninger H. In: Proc. EuroPM2007 Toulouse. Vol. 3. Shrewsbury : EPMA 2007 p. 131

  • [21] Danninger H. Schreiner M. Jangg G. Lux B.: Pract. Metallography vol. 20 1983 p. 64

  • [22] Šlesar M. Dudrová E. Parilak L. Besterci M. Rudnayová E.: Sci. Sintering vol. 19 1987 p. 17

  • [23] Danninger H. Jangg G. Weiss B. Stickler R.: Powder Metall. Int. vol. 25 1993 no. 4 p. 170; vol. 25 1993 no. 5 p. 219

  • [24] Vassileva V. Krecar D. Tomastik C. Gierl-Mayer C. Hutter H. Danninger H.: Powder Metall. Progress vol. 15 2015 no. 1 p. 369

  • [25] Danninger H. Sonntag U. Kuhnert B. Ratzi R.: Pract.Metallography vol. 39 2002 no. 8 p. 414

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 336 151 5
PDF Downloads 203 100 2