Open Access

Analytical Model of the Anisotropic Dimensional Change on Sintering of Ferrous PM Parts


Cite

This work proposes an analytical model developed from experimental data to describe the anisotropic dimensional change on sintering. Axial-symmetric iron parts differing for geometry and sintering conditions have been investigated, aiming at highlighting the influence of geometry. The specimens were measured in the green and sintered state by a coordinate measuring machine (CMM). The dimensional changes of height, external diameter and internal diameter were derived from measurement results. The anisotropy of the dimensional variations has been studied with reference to the isotropic dimensional change derived from the change in volume of the parts. The influence of geometry and sintering temperature was highlighted. To properly describe the dimensional variations in the compaction plane, the dimensional change of the external diameter versus the dimensional change of the internal one has been analysed. By means of the experimental data, a reliable analytical relationship has been found, dependent on the parts geometry. An anisotropy parameter has been identified, which allows relating the dimensional change in the compaction plane and in the axial direction to the isotropic dimensional change. This parameter depends both on geometry and on sintering conditions. By means of the anisotropy parameter an analytical model for the anisotropic behaviour has been developed.