Total Content of Phenolics and Antioxidant Activity in Crispbreads with Plant By-product addition

Open access

Abstract

Vegetable processing in food industry results in significant amount of by-products – peel, mark, bark, seeds still rich in bioactive compounds. Apple, carrot and pumpkin peel and mark may be used for production of crispbreads as functional ingredients. The objective of this study is to investigate the stability of total phenolic content (TPC) and antioxidant activity after high temperature and short time (HTST) extrusion cooking of a wheat and rice-based crispbreads with addition of apple, carrot and pumpkin by-products obtained after juice extraxtion and dried. Raw materials for crispbread production were wheat flour, rice flour, wheat bran (72%, 24% and 4% respectively) with addition of microwave–vacuum dried by-product powder in different amount (5%, 10%, 15%, 20%). Extrusion process was performed by using a laboratory singlescrew extruder GÖTTFERT 1 screw Extrusiometer L series (Germany). Total phenolic content (TPC) was determined using the Folin Ciocalteu method. Antioxidant activity was evaluated by free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant scavenging activity using a modified colorimetric method. Comparing different raw formulations, it was observed that the TPC of the apple by-product flour was significantly higher (p < 0.05) than in carrot and pumpkin flour. TPC in cereal-based crispbread was 36.06±1.15 before extrusion and 13.90±1.01 mg GAEg-1 DW (milligram Gallic acid equivalent per 100 g of dry weight (mg GAE 100 g−1 DW) after extrusion. Addition of apple BPF increased TPC in crispbreads to 106.25±2.08, carrot BPF 84.73±3.45 and pumpkin BPF to 108.82±1.04 mg GAEg−1 DW. Antioxidant activity of control sample was 1.07±0.01mg TE (Trolox equivalents) g−1 DW but in samples with addition of 20% apple by-products, it reached 3.77±0.02 TE g−1 DW for samples wih 20% carrot by-products reached 2.52±0.03TE g−1 DW and for samples wih 20% pumpkin by-products reached 3.77±0.02 TE g−1 DW.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Altan A. Mccarthy K. L. & Maskan M. (2008). Evaluation of snack foods from barley – tomato pomace blends by extrusion processing 84 231–242. DOI: 10.1016/j.jfoodeng.2007.05.014.

  • 2. Arscott S. A. & Tanumihardjo S. A. (2010). Carrots of Many Phytochemicals Acting as Functional Food. Comprehensive Reviews in Food Science and Food Safety9 223:239.

  • 3. Aziah A. A. N. & Komathi C. A. (2009). Physicochemical and functional properties of peeled and unpeeled pumpkin flour. Journal of Food Science74(7) 328–334. DOI: 10.1111/j.1750-3841.2009.01298.x.

  • 4. Camire M. (2011). Nutritional Changes during Extrusion Cooking. Advances in Food Extrusion Technology 87–102. DOI: 10.1201/b11286-5.

  • 5. Dutta D. Dutta A. Raychaudhuri U. & Chakraborty R. (2006). Rheological characteristics and thermal degradation kinetics of beta-carotene in pumpkin puree. Journal of Food Engineering76(4) 538–546. DOI: 10.1016/j.jfoodeng.2005.05.056.

  • 6. Elleuch M. Bedigian D. Roiseux O. Besbes S. Blecker C. & Attia H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation technological functionality and commercial applications: A review. Food Chemistry 124(2) 411421. DOI: 10.1016/j.foodchem.2010.06.077.

  • 7. Emin M. A. Mayer-Miebach E. & Schuchmann H. P. (2012). Retention of β-carotene as a model substance for lipophilic phytochemicals during extrusion cooking. LWT - Food Science and Technology48(2) 302–307 DOI: 10.1016/j.lwt.2012.04.004.

  • 8. Eskicioglu V. Kamiloglu S. & Nilufer-erdil D. (2015). Antioxidant Dietary Fibres: Potential Functional Food Ingredients from Plant Processing By-Products 2015(6) 487–499. DOI: 10.17221/42/2015-CJFS.

  • 9. Figuerola F. & Mar A. (2005). Food Chemistry Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment 91 395–401 DOI: 10.1016/j.foodchem.2004.04.036.

  • 10. Guine Raquel de Pinho Ferreira Correia P. M. dos R. (2013). Engineering Aspects of Cereal and Cereal-Based Products 367. Retrieved August 20 2017 from https://books.google.com/books?id=3RHSBQAAQBAJ&pgis=1.

  • 11. Haminiuk C. W. I. Maciel G. M. Plataoviedo M. S. V & Peralta R. M. (2012). Invited review Phenolic compounds in fruits – an overview 2023–2044. DOI: 10.1111/j.1365-2621.2012.03067.x.

  • 12. Henrı M. Almonacid S. Lutz M. Simpson R. & Valdenegro M. (2013). Comparison of three drying processes to obtain an apple peel food ingredient ´ n de tres procesos de secado para obtener un ingrediente alimentario de ca´ scara de Comparacio manzana 11(2) 127–135.

  • 13. Huber G. (2001). Snack Foods from Cooking Extruders. Snack Foods Processing. DOI: 10.1201/9781420012545.ch12.

  • 14. Kumar K. Jindal N. Sharma S. & Nanda V. (2013). Physico-chemical and antioxidant properties of extrudates developed from honey and barley. International Journal of Food Science and Technology48(8) 1750–1761. DOI: 10.1111/ijfs.12147.

  • 15. Mala S. Sathiya Mala K. & EKurian A. (2016). Nutritional Composition and Antioxidant Activity of Pumpkin Wastes. Ijpcbs 20166(3) 336–344.

  • 16. Nayak B. Berrios J. D. J. Powers J. R. & Tang J. (2011). Effect of Extrusion on the Antioxidant Capacity and Color Attributes of Expanded Extrudates Prepared from Purple Potato and Yellow Pea Flour Mixes 76(6) 874–884. DOI: 10.1111/j.1750-3841.2011.02279.x.

  • 17. Olfe K. E. W. Ianzhong X. W. U. & Iu R. U. I. H. A. I. L. (2003). Antioxidant Activity of Apple Peels 609–614.

  • 18. Paraman I. Sharif M. K. Supriyadi S. & Rizvi S. S. H. (2015). Food and Bioproducts Processing Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing96 78–85. DOI: 10.1016/j.fbp.2015.07.003.

  • 19. Priecina L. & Karklina D. (2014). Natural Antioxidant Changes in Fresh and Dried Spices and Vegetables 3001(5) 492–496.

  • 20. Provesi J. G. Dias C. O. & Amante E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree 128 195–202. DOI: 10.1016/j.foodchem.2011.03.027.

  • 21. Rakcejeva T. Galoburda R. Cude L. & Strautniece E. (2011). Use of dried pumpkins in wheat bread production. Italian Oral Surgery1 441–447. DOI: 10.1016/j.profoo.2011.09.068.

  • 22. Rizui S. S. H. (2015). Food and Bioproducts Processing Agro-food industry byproducts into value-added extruded foods (g) Crossark 6.

  • 23. Sarawong C. Schoenlechner R. Sekiguchi K. Berghofer E. & Ng P. K. W. (2014). Effect of extrusion cooking on the physicochemical properties resistant starch phenolic content and antioxidant capacities of green banana flour. Food Chemistry143. DOI: 10.1016/j.foodchem.2013.07.081.

  • 24. Sharma A. Yadav B. S. & Ritika. (2008). Resistant Starch: Physiological Roles and Food Applications. Food Reviews International24(2) 193–234. DOI: 10.1080/87559120801926237.

  • 25. Sojak M. J. Jaros M. & Głowacki S. (2014). Analysis of Giant Pumpkin (Cucurbita maxima) Quality Parameters in Various Technologies of Convective Drying After Long-Term Storage. Drying Technology32 (January 2015) 106–116. DOI: 10.1080/07373937.2013.816854.

  • 26. Waramboi J. G. Gidley M. J. & Sopade P. A. (2013). Carotenoid contents of extruded and nonextruded sweetpotato flours from Papua New Guinea and Australia. Food Chemistry141(3) 1740–6 DOI: 10.1016/j.foodchem.2013.04.070.

  • 27. Zargar F. A. Kumar S. Bhat Z. F. & Kumar P. (2014). Effect of pumpkin on the quality characteristics and storage quality of aerobically packaged chicken sausages. SpringerPlus3(39) DOI: 10.1186/2193-1801-3-39.

  • 28. Zielinski H. Kozlowska H. & Lewczuk B. (2001). Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovative Food Science and Emerging Technology 2 159–169.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 93 5
PDF Downloads 113 63 0