Mathematical Modeling of the Digital Measuring Signal of Intelligent Flowmeters

Open access

Abstract

The research contains theoretical analysis of the possibilities of development of a new type of devices for measurement of the consumption of energy resources in the communal services system. Novel alternatives for improvement of intelligent measuring instruments are offered in the article. On the basis of the presented calculation method, a mathematical model of the digital measuring signal for intelligent flowmeters at a uniform and at a non-uniform flow of liquids is offered. This would allow increasing the accuracy of the measuring signal as well as creating a new type of intelligent measuring devices for exact accounting of the consumption of energy resources in separate households of the communal services system. Theoretical researches showed that traditional flowmeters of cold and hot water in separate premises are unsuitable for commercial calculations as they make measurements in the critical zone of the error of the device, thus exceeding the admissible accuracy standard norm. Therefore the present state standards of Latvia for the water and heat energy account in households should be reconsidered. For assessment of the parameters of flowmeter’s target signal, a calculation method of the mathematical model with two keys of digital signals (basic and automatic correction) is offered. The main reasons of fundamental errors are defined. Examples how to calculate the target measuring signal are given. By using Laplace transform method, a novel mathematical calculation model of the measuring and correction signals of intellectual flowmeters has been developed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chernikh I. (2008). Modeling ofElectrotechnical Devices in MATLABSimPowerSystems and Simulink. St. Petersburg: DMK Press. (In Russian.)

  • 2. Kuzin L. (1962). Calculation and Design ofDiscrete Control Systems. Moscow: Mashgiz. (In Russian).

  • 3. Moskvin G. (1991a). U.S. Patent No. 4989445. Washington D.C.: U.S. Patent and Trademark Office.

  • 4. Moskvin G. (1991b). U.S. Patent No. 5012762. Washington D.C.: U.S. Patent and Trademark Office.

  • 5. Moskvin G. (1991c). U.S. Patent No. 5016569. Washington D.C.: U.S. Patent and Trademark Office.

  • 6. Moskvin G. (1992). U.S. Patent No. 5161483. Washington D.C.: U.S. Patent and Trademark Office.

  • 7. Moskvin G. (1993a). Europaisches Patent Nr. 0372089. Patentblatt Nr. 90/24 Urkunde 15.12.93 (DE FR IT GB NL SE). München.

  • 8. Moskvin G. (1993b). Europaisches Patent Nr. 0381762. Patentblatt Nr. 90/33 Urkunde 15.12.93 (DE FR GB IT NL SE). München.

  • 9. Moskvin G. (1993c). Europaisches Patent Nr. 0382852. Patentblatt Nr. 90/34 Urkunde 15.12.93 (DE FR GB IT NL SE). München.

  • 10. Moskvin G. (1993d). Europaisches Patent Nr. 0406426. Patentblatt Nr. 91/02 Urkunde 15.12.93 (DE FR GB IT NL SE). München.

  • 11. Moskvin G. (1993e). Europaisches Patent Nr. 0471076. Patentblatt Nr. 90/34 Urkunde 15.12.93 (DE FR GB IT NL SE). München.

  • 12. Moskvin G. (1998). Artificial intelligence measuring automatic control and expert systems in agriculture. In Proceedings of the 3rd IFAC/CIGR Workshop on Artificial Intelligence inAgriculture 24-26 April 1998 (pp. 176-181). Makuhari Chiba Japan.

  • 13. Moskvin G. (2003). Back propagation and transformation methods in artificial intelligence systems. In Proceedings of the4th International Scientific and PracticalConference 26-28 June 2003 (pp. 367-376). Rezekne Higher Education Institution.

  • 14. Moskvin G. & Spakovica E. (2005). Intelligent technology for the conformity assessment of agricultural products. In K. Elleithy T. Sobh A. Mahmood M. Iskander M. Karim (Eds.) Advances in ComputerInformation and Systems Sciences andEngineering: Proceedings of IETA 2005 TeNe2005 and EIAE 2005 (pp. 109-114). Springer.

  • 15. Moskvins G. (1996). Intelektualizētāsautomātiskās mērīšanas dozēšanas un uzskaitessistēmas. Zin. darbu kopsavilkums Dr.hab. inž. zin. grāda iegūšanai. Jelgava: LLU.

  • 16. Moskvins G. Spakovica E. Moskvins A. & Shahtarina A. (2012). Laplace model of transformation for optimization of measuring signal in non-uniform flow of liquid. In Proceedings of the 11th InternationalScientific Conference “Engineering for RuralDevelopment” 24-25.05.2012 (pp. 164-172). Jelgava: LLU.

  • 17. Regtien P.P.L. (2005). Systematic description of sensors. In Handbook of Measuring SystemsDesign (pp. 751-757). Wiley Malden MA USA.

  • 18. Regtien P.P.L. (2005). Transducer fundamentals. In Handbook of MeasuringSystems Design (pp. 717-724). Wiley Malden MA USA.

  • 19. Yamasaki H. (1996). Intelligent Sensors. Yokogawa Research Institute Tokyo Japan: Elsevier.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 185 68 1
PDF Downloads 76 32 1