Composition of Volatile Compounds of Horseradish Roots (Armoracia rusticana L.) Depending on the Genotype

Open access


Horseradish is a perennial plant with significant antioxidant properties, and it contains about 0.2% to 1.0% of essential oil, mainly sinigrin, sinigrin-derived allylisothiocyanate and diallylsulphide. The aim of the study was to determine composition of volatile compounds of horseradish (A. rusticana L.) roots depending on the genotype. Volatiles from fresh horseradish roots of nine genotypes were extracted using solid phase microextraction with DVB/Car/PDMS fibre and were further analysed using gas chromatography-mass spectrometry. The volatile compounds were identified by comparing their mass spectra with mass spectral libraries (Nist98) and by calculating linear retention indexes and comparing them with the literature data. The studied horseradish genotypes differed both in the quantitative and qualitative content of aroma compounds. Totally 15 volatile compounds were detected, and their highest amount was found in genotype G12B. The main aroma compound of all horseradish samples was allylisothiocyanate, which formed 64-82% of the total identified volatile compounds. The obtained results were compared with those found in the literature. All horseradish samples contained significant amounts of phenylethylisothiocyanate (4-18%) that is formed from glucosinolate - gluconasturtin. The study revealed that genotype has great influence on the content of volatiles in horseradish roots.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Afsharypuor S. Jeiran K. & Jazy A.A. (1998). First investigation of the flavor profiles of leaf ripe fruit and root of Capparisspinosa var. mucronifolia from Iran. Pharmaceutica acta Helvetiae 72 307-309. DOI: 10.1016/S0031-6865(97)00023-X.

  • 2. Andreasson E. Jorgensen L. B. Hoglund A.S. Rask L. & Meijer J. (2001). Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. PlantPhysiology 127(4) 1750-1763. DOI: 10.1104/ pp.010334.

  • 3. Arrigoni-Blank M.F. Antoniolli A.R. Caetano L.C. Campos D.A. Blank A. F. & Alves P.B. (2008). Antinociceptive activity of the volatile oils of Hyptis pectinata L. Poit. (Lamiaceae) genotypes. Phytomedicine 15 334-339. DOI: 10.1016/j.phymed.2007.09.009.

  • 4. Bodnaryk R.P. Luo M. & Kudryk L. (1997). Effects of modifying the phytosterol profile of canola Brassica napus L. on growth development and survival of the bertha armyworm Mamestra configurata Walker (Lepidoptera: Noctuidae) the flea beetle Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae) and the aphids Lipaphiserysimi (Kaltenbach) and Myzus persicae (Sulzer) (Homoptera: Aphididae). CanadianJournal of Plant Science 77 677-683. DOI: on 10/10/12.

  • 5. Bones A.M. & Rossiter J.T. (1996). The myrosinase-glucosinolate system its organization and biochemistry. PlantPhysiology 97(1) 194-208.

  • 6. Bones A.M. & Rossiter J.T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11) 1053-1067. DOI: 10.1016/j.phytochem.2006.02.024.

  • 7. Dinkova-Kostova A.T. (2008). The isothiocyanate sulforaphane induces the phase 2 response by signaling of the Keap1-Nrf2-ARE pathway: Implications for dietary protection against cancer. In Young-Joon Surh (Ed.) Dietary Modulation of Cell Signaling Pathways (pp. 206-227). LLC CRC Press.

  • 8. Fahey J.W. Zalcmann A.T. & Talalay P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1) 5-51. DOI: 10.1016/S0031-9422(00)00316-2.

  • 9. Fenwick G.R. Heaney R.K. & Mullin W.J. (1983). Glucosinolates and their breakdown products in food and food plants. Food Science and Nutrition 18 123-201. DOI: 10.1016/0308-8146(83)90074-2.

  • 10. Gaind K.N. Gandhi K.S. Junega T.R. Kjær A. & Juhl N.B. (1975). 4567-tetrahydroxydecyl isothiocyanate derived from a glucosinolate in Capparisgrandis. Phytochemistry 14 1415-1418. DOI: 10.1016/S0031-9422(00)98640-0.

  • 11. Gamage G.R. Park H.J. & Kim K.M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food ResearchInternational 42 832-839. DOI: 10.1016/j. foodres.2009.03.012.

  • 12. Gil V. & MacLeod A.J. (1980). The effects of pH on glucosinolate degradation by a thioglucoside glucohydrolase preparation. Phytochemistry 19(12) 2547-2551. DOI: 10.1016/S0031-9422(00)83916-3.

  • 13. Halkier B.A. & Gershenzon J. (2006). Biology and biochemistry of glucosinolates. AnnualReview of Plant Biology 57 303-333. DOI: 10.1146/annurev.arplant.57.032905.105228.

  • 14. Kjaer A. (1976). Glucosinolates in the cruciferae. In J.G. Vaughan A.J. MacLeod & B.M.G. Jons (Eds.) The Biology and Chemistryof the Cruciferae (pp. 207-219.). London: Academic Press.

  • 15. Ko J.A. Kim W.Y. & Park H.J. (2012). Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi International. Journal of FoodMicrobiology 153 92-98. DOI: 10.1016/j. ijfoodmicro.2011.10.021.

  • 16. Kulisic-Bilusic T. Schmöller I. Schnäbele K. Siracusa L. & Ruberto G. (2012). The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chemistry 132 261-267. DOI: 10.1016/j.foodchem.2011.10.074.

  • 17. Li C. Xue F. Xu Y. Ren C. & Pan S. (2012). Influence of different gel complexes on flavour and colour change in Chongcai pastage. Food Chemistry 130 632-637. DOI: 10.1016/j. foodchem.2011.07.095.

  • 18. Mari M. Leoni O. Bernardi R. Neri F. & Palmieri S. (2008). Control of brown rot on stonefruit by synthetic and glucosinolatederived isothiocyanates. Postharvest Biologyand Technology 47 61-67. DOI: 10.1016/j. postharvbio.2007.06.003.

  • 19. Matich A.J. Young H. Allen J.M. Wang M.Y. Fielder S. McNeilage M.A. & MacRae E.A. (2003). Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry 63 285-301. DOI: 10.1016/S0031-9422(03)00142-0.

  • 20. Matthaus B. & Özcan M. (2002). Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. Journal of agricultural and foodchemistry 50(25) 7323-7325. DOI: 10.1021/ jf020530+.

  • 21. Matusheski N.V. & Jeffery E.H. (2001). Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli sulforaphane and sulforaphane nirile. Food Chemistry 49(12) 5743-5749. DOI: 10.1021/jf010809a.

  • 22. Mayton H.S. (1996). Correlation of fungicidal activity of Brassica species with allylisothiocyanate production in macerated leaf tissue. Phytopathology 86 267-271.

  • 23. Neoh T.L. Yamamoto C. Ikefuji S. Furuta T. & Yoshii H. (2012). Heat stability of allylisothiocyanate and phenylisothiocyanate complexed with randomly methylated β-cyclodextrin. Food Chemistry 131 1123-1131. DOI: 10.1016/j.foodchem.2011.09.077.

  • 24. Olsson K. & Jonasson T. (1994). Leaf feeding by caterpillars on white cabbage cultivars with different 2-propenyl glucosinolate (sinigrin). Journal of Applied Entomology 118 197-202. DOI: 10.1111/j.1439-0418.1994.tb00794.x.

  • 25. Park I.K. Choi K.S. Kim D.H. Choi I.H. Kim L.S. Bak W.C. ... Shin S.C. (2006). Fumigant activity of plant essential oils and components from horseradish (Armoraciarusticana) anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Management Science 62 723-728. DOI: 10.5897/AJB10.2023.

  • 26. Pfalz M. Vogel H. Mitchell-Olds T. & Kroymann J. (2007 June). Mapping of QTL for resistance against the crucifer specialist herbivore Pieris brassicae in a new Arabidopsis inbred line population Da(1)-12 x Ei-2 [Abstract]. PLoS One 2(6):e578. Retrieved from PubMed database on the World Wide Web:

  • 27. Raghavan Uhl S. (2000). A to Z spices. In Handbook of Spices Seasonings andFlavorings (pp. 59-60). CRC Press LLC.

  • 28. Rask L. Andréasson E. Ekbom B. Eriksson S. Pontoppidan B. & Meijer J. (2000). Myrosinase: gene family evolution and herbivore defense in Brassiceae. Plantmolecular biology 42 (1) 93-113. DOI: 10.1023/A:1006380021658.

  • 29. Romeo V. Ziino M. Giuffrida D. Condurso C. & Verzera A. (2007). Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC-MS. Food Chemistry 101 1272-1278.

  • 30. Shahidi F. & Gabon J.E. (1990). Fate of sinigrin in methanol/ammonia/water-hexane extraction of B. juncea mustard seed. Journalof Food Science 55 793-795. DOI: 10.1111/ j.1365-2621.1990.tb05233.x.

  • 31. Shroff R. Vergara F. Muck A. Svatos A. & Gershenzon J. (2008). Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proceedings of the National Academy ofSciences of the United States of America 105 6196-6201.

  • 32. Tlili N. Elfalleh W. Saadaoui E. Khaldi A. Triki S. & Nasri N. (2011). The caper (Capparis L.): Ethnopharmacology phytochemical and pharmacological properties. Fitoterapia 82 93-101. DOI: 10.1016/j. fitote.2010.09.006.

  • 33. Tomsone L. Krūma Z. Lepse L. & Alsina I. (2012). The application of hierarchical cluster analysis to clasify genotypes of horseradish (Armoracia rusticana L.) roots. In Conference program and abstracts of the 7th Baltic Conference on Food Science and Technology 17-18 May 2012 (p. 102). Kaunas Lithuania: Kaunas University of Technology.

  • 34. Velišek J. & Cejpek K. (2008). Phenolic compounds. In V. Šedivy (Ed.) Biosynthesis offood components (pp. 314-372). OSSIS.

  • 35. Whitmore B.B. & Naidu A.S. (2000). Glucosinolates. In A.S. Naidu (Ed.) NaturalFood Antimicrobial Systems (pp. 1-18). CRC Press LLC.

  • 36. Wittstock U. & Halkier B.A. (2002). Glucosinolate research in the Arabidopsis era. Trends in Plant Science 7(6) 263-270. DOI: 10.1016/S1360-1385(02)02273-2.

  • 37. Wu X. Kassie F. & Mersch-Sundermann V. (2005). Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutation Research/Reviewsin Mutation Research 589 81-102. DOI: 10.1016/j.mrrev.2004.11.001.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1041 341 2
PDF Downloads 300 132 2