Low cost blood vein detection system based on near-infrared LEDs and image-processing techniques

  • 1 Department of Medical Instrumentation Techniques Engineering, AL-Hussain University College, Karbala, Iraq

Abstract

Drawing blood and injecting drugs are common medical procedures, for which accurate identification of veins is needed to avoid causing unnecessary pain. In this paper, we propose a low-cost system for the detection of veins. The system emits near-infrared radiation from four light-emitting diodes (LEDs), with a charge-coupled device (CCD) camera located in the middle of the LEDs. The camera captures an image of the palm of the hand. A series of digital image-processing techniques, ranging from image enhancement and increased contrast to isolation using a threshold limit based on statistical properties, are applied to effectively isolate the veins from the rest of the image.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Yen K, Gorelick MH. New biomedical devices that use near-infrared technology to assist with phlebotomy and vascular access. Pediatr Emerg Care. 2013;29(3):383-385.

  • [2] Francis M, Jose A, Glan Devadhas G, Avinashe KK. A novel technique for forearm blood vein detection and enhancement. Biomedical Research. 2017;28(7):2913-2919.

  • [3] Scoppettuolo G, Pittiruti M, Pitoni S, et al. Ultrasound-guided “short” midline catheters for difficult venous access in the emergency department: a retrospective analysis. Int J Emerg Med. 2016;9(1):3.

  • [4] Saito H, Togawa T. Detection of needle puncture to blood vessel using puncture force measurement. Med Biol Eng Comput. 2005;43(2):240-244.

  • [5] Chandra F, Wahyudianto A, Yasin M. Design of vein finder with multi tuning wavelength using RGB LED. J Phys: Conf Ser. 2017;853(1):012019.

  • [6] Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys. 2008;30(5):599-606.

  • [7] Vogelmann TC, Bornman JF, Josserand S. Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. Phil Trans R Soc Lond B Biols Sci. 1989;323(1216):411-421.

  • [8] Zhang EZ, Povazay B, Laufer J, et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed Opt Express. 2011;2(8):2202-2215.

  • [9] Fu D, Ye T, Matthews TE, et al. High-resolution in vivo imaging of blood vessels without labeling. Opt Lett. 2007;32(18):2641-2643.

  • [10] Fuksis R, Greitans M, Nikisins O, Pudzs M. Infrared imaging system for analysis of blood vessel structure. Elektronika ir Elektrotechnika. 2010;97(1):45-48.

  • [11] Nazish S, Zafar A, Shahid R, et al. Relationship between glycated haemoglobin and carotid atherosclerotic disease among patients with acute ischaemic stroke. Sultan Qaboos University Medical Journal. 2018;18(3):e311-e317.

  • [12] Swarbrick J. Encyclopedia of pharmaceutical technology. CRC Press; 2013.

  • [13] Kienle A, Lilge L, Vitkin IA, et al. Why do veins appear blue? A new look at an old question. Appl Opt. 1996;35(7):1151-1160.

  • [14] Bäumler W, Ulrich H, Hartl A, et al. Optimal parameters for the treatment of leg veins using Nd: YAG lasers at 1064 nm. Br J Dermat. 2006;155(2):364-371.

  • [15] García AM, Horche PR. Light source optimizing in a biphotonic vein finder device: Experimental and theoretical analysis. Results Phys. 2018;11:975-983.

  • [16] Cholewka A, Kajewska J, Kawecki M,. How to use thermal imaging in venous insufficiency? J Thermal Anal Calorimetry. 2017;130(3):1317-1326.

  • [17] Helmich FP, Ivison RJ. FIRI—A far-infrared interferometer. Experimental Astronomy. 2009;23(1):245-276.

  • [18] Ahmed KI, Habaebi MH, Islam R. A Real Time Vein Detection System. Indones J Electr Eng Comput Sci. 2018;10(1):129-137.

  • [19] Lammertyn J, Peirs A, De Baerdemaeker J, Nicolaı B. Light penetration properties of NIR radiation in fruit with respect to nondestructive quality assessment. Postharvest Biol Technol. 2000;18(2):121-132.

  • [20] Chandra F, Wahyudianto A, Yasin M. Design of vein finder with multi tuning wavelength using RGB LED. J Phys: Conf Series. 2017;853(1):012019.

  • [21] Miura N, Nakazaki K, Fujio M, Takahashi K. Technology and future prospects for finger vein authentication using visible-light cameras. Hitachi Review. 2018;67(5):576-577.

  • [22] Prijono A, Hangkawidjaja AD, Ahmar AS. Verification Image of The Veins on The Back Palm with Modified Local Line Binary Pattern (MLLBP) and Histogram. J Phys: Conf Series. 2018;954(1):012014.

  • [23] Cui M, Hu J, Razdan A, Wonka P. Color-to-gray conversion using ISOMAP. The Visual Computer. 2010;26(11):1349-1360.

  • [24] Wu QQ, Lee JP, Park MH, et al. A study on development of optimal noise filter algorithm for laser vision system in GMA welding. Procedia Engineering. 2014;97:819-827.

  • [25] Alwazzan MJ, Ismael MA, Hussain MK. Brain Tumour Isolation in MRI Images Based on Statistical Properties and Morphological Process Techniques. J Phys: Conf Series 2019;1279(1):012018.

  • [26] Kamola G, Spytkowski M, Paradowski M, Markowska-Kaczmar U. Image-based logical document structure recognition. Pattern Analysis and Applications. 2015;18(3):651-665.

  • [27] Loomis WF. Skin-Pigment Regulation of Vitamin-D Biosynthesis in Man: Variation in solar ultraviolet at different latitudes may have caused racial differentiation in man. Science. 1967;157(3788):501-506.

  • [28] Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci. 2008;1(3):248-272.

  • [29] Battese GE, Harter RM, Fuller WA. An error-components model for prediction of county crop areas using survey and satellite data. Journal of the American Statistical Association. 1988;83(401):28-36.

  • [30] Witting MD, Schenkel SM, Lawner BJ, Euerle BD. Effects of vein width and depth on ultrasound-guided peripheral intravenous success rates. J Emerg Med. 2010;39(1):70-75.

  • [31] Soujanya G. Depth and size limits for the visibility of veins using the VeinViewer imaging system. Master of Science Thesis, The University of Tennessee, Memphis, USA. 2007.

  • [32] Al-Harosh MB, Shchukin SI. Peripheral vein detection using electrical impedance method. J Electrical Bioimpedance. 2019;8(1):79-83.

OPEN ACCESS

Journal + Issues

Search