Estimation of temperature distribution with the use of a thermo-camera

Open access

Estimation of temperature distribution with the use of a thermo-camera

The determination of three-dimensional (3D) temperature distribution within tissue during thermoablation is necessary to estimate procedure efficiency. The use of a thermo-camera combined with finite element modelling is discussed.

The temperature distributions in a metal phantom and an animal tissue sample were simulated. In the real experiment, temperatures were measured around the heating probe by a thermo-resistor set and the temperature distributions on samples' surface were acquired by a thermo-camera. The temperatures measured in the experiment were compared with the simulated ones. The differences between the measured and simulated temperatures were lower than 1.3°C and 3.0°C for a metal phantom and tissue sample, respectively.

Good agreement was achieved for homogenous material of well-defined parameters. Higher discrepancies for the tissue sample are due to in-homogeneity and to difficulties with describing tissue thermal properties.

The proposed method permits the precise prediction of a 3D temperature distribution in in-vitro studies. Potential application for in-vivo procedures requires further investigations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barauskas R Gulbinas A Barauskas G. Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina. 2007; 43: 310-325.

  • Chang I. Finite Element Analysis of Hepatic Radiofreqiency Ablation Probes using Temperature-Dependent Electrical Conductivity. Biomed Eng OnLine. 2003; 2: 12-29.

  • Dick E Taylor-Robinson S Thomas H Gedroyc W. Ablative therapy for liver tumours. Gut. 2002; 50: 733-739.

  • Garrean S Hering J Helton S Espat J. A primer on transarterial chemical and thermal ablative therapies for hepatic tumors. Am J Surg. 2007; 194: 79-88.

  • Haemmerich D Chachati L Wright A Mahvi D Lee F Webster J. Hepatic Radiofrequency Ablation With Internally Cooled Probes: Effect of Coolant Temperature on Lesion Size. IEEE Trans Biomed Eng. 2003; 50: 493-500.

  • Hildebrandt B Wust P Ahlers O Dieing A Sreenivasa G Kerner T Felix R Riess H. The cellular and molecular basis of hyperthermia. Critical Rev Oncol Hemat. 2002; 43: 33-56.

  • Jain M Wolf P. A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Ann Biomed Eng. 2000; 28: 1075-1084.

  • Johnson P Saidel G. Thermal Model for Fast Simulation During Magnetic Resonance Imaging Guidance of Radio Frequency Ablation. Ann Biomed Eng. 2002; 30: 1152-1161.

  • Mohammed Y Verhey F. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng OnLine. 2005; 4: 2-17. doi: 10.1186/1475-925X-4-2.

  • Reddy J Gartling D. The Finite Element Method in Heat Transfer and Fluid Dynamics. London: CRC Press; 2003.

  • Shang D. Free Convection Film Flows and Heat Transfer. Berlin: Springer; 2006.

  • Stauffer P Goldberg S. Introduction: Thermal ablation therapy. Int J Hyperthermia. 2004; 20: 671-677.

  • Strasberg S Linehan D. Radiofrequency Ablation of Liver Tumors. Curr Probl Surg. 2003; 40: 459-498.

Journal information
Impact Factor

CiteScore 2018: 0.38

ICV 2017 = 103.49

SCImago Journal Rank (SJR) 2018: 0.132
Source Normalized Impact per Paper (SNIP) 2018: 0.303

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 142 79 2
PDF Downloads 75 47 0