Effect of Dietary Fibre Fractions on In Vitro Digestibility of Rapeseed Napin Proteins

Open access


Protein digestibility may be influenced by the presence of dietary fibre affecting the nutritional quality of a feed or food product. This study investigated the interplay between rapeseed (Brassica napus L.) protein and fibre constituents separated by industrially scalable pilot plant processing and recombined in mixed samples. Total dietary fibre (TDF) fractions were isolated from rapeseed hulls (TDF-RH) and purified rapeseed embryo fibres (TDF-RE). The effect of TDF sources on in vitro protein digestibility (IVPD) of a rapeseed protein concentrate rich in napin proteins (RP2) was assessed at three inclusion levels (200, 333, and 500 mg/g DM) using a sequential transient proteolysis by pepsin (1 h) and pancreatin (1 h). The IVPD of RP2 was dose-dependently decreased upon addition of hull fibres at all inclusion levels (8.9-26.6%; P<0.05), whereas the effect of embryo fibres was of a markedly lower magnitude and only significant at the medium to high levels (7.3-8.9%; P<0.05). These results demonstrated that TDF fractions obtained from rapeseed differentially affect the protein digestibility of rapeseed napin proteins depending on the fibre source and inclusion level.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Acton J.C. Breyer L. Satterlee L.D. Effect of dietary fiber constituents on the in vitro digestibility of casein. J. Food Sci. 1982 47 556–560.

  • 2. Andersen K.E. Bagger C. Sørensen H. Sørensen J.C. A process for the manufacture of products from cruciferous crops. Denmark Patent no. WO/2012/149941 2012 Available from: [https://patents.google.com/patent/WO2012149941].

  • 3. AOAC International Official Method 985.29. Total dietary fiber in foods. 1985 in: Official Methods of Analysis of AOAC International Gaithersburg MD USA.

  • 4. AOAC International Official Method 950.46 (Modified). Moisture in meat. 2000 in: Official Methods of Analysis of AOAC International Gaithersburg MD USA.

  • 5. Asp N.G. Johansson C.G. Hallmer H. Siljeström M. Rapid enzymatic assay of insoluble and soluble dietary fiber. J. Agric. Food Chem. 1983 31 476–482.

  • 6. Bjergegaard C. Eggum B.O. Jensen S.K. Sørensen H. Dietary fibres in oilseed rape: Physiological and antinutritional effects in rats of isolated IDF and SDF added to a standard diet. J. Anim. Physiol. Anim. Nutr. 1991a 66 69–79.

  • 7. Bjergegaard C. Jensen S.K. Sørensen H. Dietary fibres in oilseed rape: Properties and effects on the digestibility of rapeseed meal. GCIRC Congr. Saskat. Can. 1991b 2 448–453.

  • 8. Bjergegaard C. Sørensen H. Sørensen S. Dietary fibres and associated compounds in rape seed and biorefined rape seed products compared to DF in pea. J. Anim. Feed Sci. 1997 6 163–184.

  • 9. Bos C. Airinei G. Mariotti F. Benamouzig R. Bérot S. Evrard J. Fénart E. Tomé D. Gaudichon C. The poor digestibility of rapeseed protein is balanced by its very high metabolic utilization in humans. J. Nutr. 2007 137 594–600.

  • 10. Brulé D. Savoie L. In vitro digestibility of protein and amino acids in protein mixtures. J. Sci. Food Agric. 1988 43 361–372.

  • 11. Campbell L. Rempel C.B. Wanasundara J.P.D. Canola/rapeseed protein: Future opportunities and directions — Workshop proceedings of IRC 2015. Plants 2016 5 art. no. 17.

  • 12. Danielsen V. Eggum B.O. Jensen S.K. Sørensen H. Dehulled protein-rich rapeseed meal as a protein source for early weaned piglets. Anim. Feed Sci. Technol. 1994 46 239–250.

  • 13. Dutta S.K. Hlasko J. Dietary fiber in pancreatic disease: effect of high-fiber diet on fat malabsorption in pancreatic insufficiency and in vitro study of the interaction of dietary fiber with pancreatic enzymes. Am. J. Clin. Nutr. 1985 41 517–525.

  • 14. Fleddermann M. Fechner A. Rößler A. Bähr M. Pastor A. Liebert F. Jahreis G. Nutritional evaluation of rapeseed protein compared to soy protein for quality plasma amino acids and nitrogen balance – A randomized cross-over intervention study in humans. Clin. Nutr. 2013 32 519–526.

  • 15. Gagne C.M. Acton J.C. Fiber constituents and fibrous food residue effects on the in vitro enzymatic digestion of protein. J. Food Sci. 1983 48 734–738.

  • 16. Goodman B.E. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ. 2010 34 44–53.

  • 17. Grala W. Verstegen M.W. Jansman A.J. Huisman J. van Leeusen P. Ileal apparent protein and amino acid digestibilities and endogenous nitrogen losses in pigs fed soybean and rapeseed products. J. Anim. Sci. 1998 76 557–568.

  • 18. Grundy M.M.-L. Edwards C.H. Mackie A.R. Gidley M.J. Butterworth P.J. Ellis P.R. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility digestion and postprandial metabolism. Br. J. Nutr. 2016 116 816–833.

  • 19. Hansen W.E. Effect of dietary fiber on proteolytic pancreatic enzymes in vitro. Int. J. Pancreatol. 1986 1 341–351.

  • 20. Ivanova P. Chalova V. Uzunova G. Koleva L. Manolov I. Biochemical characterization of industrially produced rapeseed meal as a protein source in food industry. Agric. Agric. Sci. Procedia 2016 10 55–62.

  • 21. Joehnke M.S. Rehder A. Sørensen S. Bjergegaard C. Sørensen J.C. Markedal K.E. In vitro digestibility of rapeseed and bovine whey protein mixtures. J. Agric. Food Chem. 2018 66 711–719.

  • 22. Khajali F. Slominski B.A. Factors that affect the nutritive value of canola meal for poultry. Poult. Sci. 2012 91 2564–2575.

  • 23. Kracht W. Dänicke S. Kluge H. Keller K. Matzke W. Hennig U. Schumann W. Effect of dehulling of rapeseed on feed value and nutrient digestibility of rape products in pigs. Arch. Anim. Nutr. 2004 58 389–404.

  • 24. Mansour E.H. Dworschák E. Lugasi A. Gaál Ö. Barna É. Gergely A. Effect of processing on the antinutritive factors and nutritive value of rapeseed products. Food Chem. 1993 47 247–252.

  • 25. Mosenthin R. Sauer W.C. Ahrens F. Dietary pectin’s effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 1994 124 1222–1229.

  • 26. Ochodzki P. Rakowska M. Rek-Cieply B. Bjergegaard C. Sørensen H. Studies on enzymatic fractionation chemical composition and biological effects of dietary fibre in rape seed (Brassica napus L.). 2. Influence of rape seed dietary fibre on digestibility of protein and organic matter using unprocessed and heated full fat rape seed and isolated dietary fibre fractions added to rat diets. J. Anim. Feed Sci. 1995 4 139–151.

  • 27. Pasha I. Saeed F. Sultan M.T. Khan M.R. Rohi M. Recent developments in minimal processing: A tool to retain nutritional quality of food. Crit. Rev. Food Sci. Nutr. 2014 54 340–351.

  • 28. Ren L.Q. Zhao F. Tan H.Z. Zhao J.T. Zhang J.Z. Zhang H.F. Effects of dietary protein source on the digestive enzyme activities and electrolyte composition in the small intestinal fluid of chickens. Poult. Sci. 2012 91 1641–1646.

  • 29. Richter C.K. Skulas-Ray A.C. Champagne C.M. Kris-Etherton P.M. Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk?. Adv. Nutr. 2015 6 712–728.

  • 30. Saunders R.M. Betschart A.A. The significance of protein as a component of dietary fiber. Am. J. Clin. Nutr. 1980 33 960–961.

  • 31. Savoie L. Galibois I. Parent G. Charbonneau R. Sequential release of amino acids and peptides during in vitro digestion of casein and rapeseed proteins. Nutr. Res. 1988 8 1319–1326.

  • 32. Schulze H. van Leeuwen P. Verstegen M.W. Huisman J. Souffrant W.B. Ahrens F. Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. J. Anim. Sci. 1994 72 2362–2368.

  • 33. Shah N. Atallah M.T. Mahoney R.R. Pellett P.L. Effect of dietary fiber components on fecal nitrogen excretion and protein utilization in growing rats. J. Nutr. 1982 112 658–666.

  • 34. Slominski B.A. Jia W. Rogiewicz A. Nyachoti C.M. Hickling D. Low-fiber canola. Part 1. Chemical and nutritive composition of the meal. J. Agric. Food Chem. 2012 60 12225–12230.

  • 35. Stone A.K. Teymurova A. Dang Q. Abeysekara S. Karalash A. Nickerson M.T. Formation and functional attributes of electrostatic complexes involving napin protein isolate and anionic polysaccharides. Eur. Food Res. Technol. 2014 238 773–780.

  • 36. Tan S.H. Mailer R.J. Blanchard C.L. Agboola S.O. Canola proteins for human consumption: Extraction profile and functional properties. J. Food Sci. 2011 76 R16–R28.

  • 37. USDA FAS Oilseeds: World Markets and Trade 2018 Available from: [https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. Last accessed 04/06/2018].

  • 38. Wanasundara J.P.D. Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit. Rev. Food Sci. Nutr. 2011 51 635–677.

  • 39. Zhang B. Liu G. Ying D. Sanguansri L. Augustin M.A. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal. Food Res. Int. 2017 100 658–664.

Journal information
Impact Factor

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2018: 1.92

SCImago Journal Rank (SJR) 2018: 0.621
Source Normalized Impact per Paper (SNIP) 2018: 0.908

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 420 184 4
PDF Downloads 289 165 5