Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains

Open access

Abstract

The impact of puffing on nutritional composition and phenolic profiles of kiwicha (Amaranthus caudatus L.) and quinoa (Chenopodium quinoa Willd.) was investigated. Popped kiwicha showed increased protein and lipid contents and lower contents of carbohydrates compared to the untreated grains. Higher lipid, ash and carbohydrates contents and a decreased protein content were observed after puffing of quinoa. Fatty acid profile and ω-6/ω-3 ratio was not affected by puffing, although it was observed a healthier ratio in quinoa (7:1) compared to kiwicha (65:1). Thermal treatment reduced essential amino acid contents and protein quality of both grains, although amino acids content remained adequate according to FAO/WHO requirements for adults. Puffing decreased hydroxybenzoic and hydroxycinnamic acids content of both pseudocereals. Flavonoid levels were negatively affected by puffing in kiwicha while a noticeable increase was observed in popped quinoa. In summary, puffing of kiwicha and quinoa grains is an alternative processing method to obtain expanded products or precooked flours of adequate nutritional value.

1. Adler A.I., Boyko E.J., Schraer C.D., Murphy N.J., Lower prevalence of impaired glucose tolerance and diabetes associated with daily seal oil or salmon consumption among Alaska Natives. Diabetes Care, 1994, 17, 1498–1501.

2. Alvarez-Jubete L., Wijngaard H.E., Arendt K., Gallagher E., Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem., 2010, 119, 770–778.

3. Amare E., Mouquet-Rivier C., Rochette I., Adish A., Haki G.D., Effect of popping and fermentation on proximate composition, minerals and absorption inhibitors, and mineral bioavailability of Amaranthus caudatus grain cultivated in Ethiopia. J. Food Sci. Tech. Mysore, 2016, 3, 2987–2994.

4. AOAC. Fatty acids in oils and fats, preparation of methyl esters. Official Method 969.33. in: Official Methods of Analysis 15th ed., 1990, AOAC International, Arlington, Arlington, Virginia.

5. AOAC. Official Methods of Analysis of AOAC International, 18th ed. 2005, AOAC International, Gaithersburg, MD, USA.

6. Arena S., Renzone G., D’Ambrosio C., Salzano A.M., Scaloni A., Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chem., 2017, 219, 477–489.

7. Barba de la Rosa A.P., Fomsgaard I., Laursen B., Mortensen A.G., Olvera-Martinez L., Silva-Sánchez C., Mendoza-Herrera A., González-Castañeda J., De León-Rodríguez A. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci., 2009, 49, 117–121.

8. Barros L., Dueñas M., Carvalho A.M., Ferreira I.C.F.R., Santos-Buelga C., Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol., 2012, 50, 1576–1582.

9. Barros L., Dueñas M., Dias M.I., Sousa M.J., Santos-Buelga C., Ferreira, I.C.F.R., Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusion. Food Chem., 2013, 136, 1–8.

10. Block R.J., Mitchel H.H., The correlation of the amino acid composition of protein with their nutritive value. Nutr. Abstracts Rev., 1946, 16, 249–278.

11. Chaires-Martinez L., Perez-Vargas M.A., Cantor del Angel A.I., Cruz-Bermudez F., Jiménez-Avalos H.A., Total phenolic content and antioxidant capacity of germinated, popped and cooked Huauzontle (Chenopodium berlandieri spp. nuttalliae) seeds. Cereal Chem., 2013, 90, 263–268.

12. Crisan E.V., Sands A., Nutritional value. 1978, in: The Biology and Cultivation of Edible Mushrooms (eds. S.T. Chang, W.A. Hayes). Academic Press, New York, pp. 137–165.

13. de la Barca A.M.C., Rojas-Martínez M.E., Islas-Rubio A.R., Cabrera-Chávez F., Gluten-Free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods Human Nutr., 2010, 65, 241–246.

14. Dueñas M., Pérez-Alonso J.J., Santos-Buelga C., Escribano-Bailón M.T., Anthocyanin composition in fig (Ficus carica L.). J. Food Comp. Anal., 2008, 21, 107–115.

15. FAO. 2011. Quinoa: an ancient crop to contribute to world food security. Available from: [http://www.fao.org/docrep/017/aq287c/aq287e.pdf]. Accessed 2016 August 25th.

16. Gamel T.H., Linssen J.P., Alink G.M., Mossallem A.S., Shekib L.A., Nutritional study of raw and popped seed proteins of Amaranthus caudatus L. and Amaranthus cruentus L. J. Sci. Food Agric., 2004, 84, 1153–1158.

17. Gamel T.H., Linssen J.P., Mesallam A.S., Damir A.A., Shekib L.A., Seed treatments affect functional and antinutritional properties of amaranth flours. J. Sci. Food Agric., 2006, 86, 1095–1102.

18. Gamel T.H., Linssen J.P.H., Flavor compounds of popped amaranth seed. J. Food Process. Preserv., 2008,32, 656–668.

19. Gómez-Caravaca A.M., Segura-Carretero A., Fernández-Gutíerrez A., Caboni M.F., Simultaneous determination of phenolic compounds and saponins in Quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time of flight mass spectrometry methodology. J. Agric. Food Chem., 2011, 59, 10815–10825.

20. Hoke K., Houška M., Průchová J., Gabrovská D., Vaculová K., Paulíčková I., Optimisation of puffing naked barley. J. Food Eng., 80, 2007, 1016–1022.

21. Ihekoronye A.I., 1981. A rapid enzymatic and chromatographic predictive model for the in vivo rat based protein efficiency ratio (PhD thesis). University of Missouri, Columbia.

22. Klimczak M., Malecka M., Pacholek B., Antioxidant activity of ethanolic extracts of amaranth seeds. Nahrung – Food, 2002, 46, 184–186.

23. Kromann N., Green A., Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med. Scand., 1980, 208, 401–406.

24. Kromhout D., de Goede J., Update on cardiometabolic health effects of ω-3 fatty acids. Curr. Opin. Lipidol., 2014, 25, 85–90.

25. Lamothe L.M., Srichuwong S., Reuhs B.L., Hamaker B.R., Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem., 2015, 167, 490–496.

26. Martinez-Villaluenga C., Torres A., Frias J., Vidal-Valverde C., Semolina supplementation with processed lupin and pigeon pea flours improves protein quality of pasta. LWT – Food Sci. Technol., 2010, 43, 617–622.

27. Mota C., Nascimento A.C., Santos M., Delgado I., Coelho I., Rego A., Matos A.S., Torres D., Castanheira I., The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). J. Food Comp. Anal., 2016, 49, 57–64.

28. Mota C., Santos M., Mauro R., Samman N., Matos A.S., Torres D., Castanheira I., Protein content and amino acids profile of pseudocereals. Food Chem., 2016, 193, 55–61.

29. Murakami T., Yutani A., Yamano T., Iyota H., Konishi Y., Effects of popping on nutrient contents of amaranth seed. Plant Foods Hum. Nutr., 2014, 69, 25–29.

30. Muyonga J.H., Andabati B., Ssepuuya G., Effect of heat processing on selected grain amaranth physicochemical properties. Food Sci. Nutr., 2014, 2, 9–16.

31. Nascimento A.C., Mota C., Coelho I., Gueifão S., Santos M., Matos A.S., Lobo M., Samman N., Castanheira I., Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem., 2014, 148, 420–426.

32. Ogrodowska D., Czaplicki S., Zadernowski R., Mattila P., Hellstrom J., Naczk M., Phenolic acids in seeds and products obtained from Amaranthus cruentus. J. Food Nutr. Res., 2012, 51, 96–101.

33. Oser B.L., An integrated essential amino acid index for predicting the biological value of proteins. 1959, in: Protein and Amino Acids in Nutrition (ed. A.A. Albanese). Academic Press, New York, pp. 281–291.

34. Pasko P., Gdula-Argainska J., Podporska-Carroll J., Quilty B., Wietecha-Posluszny R., Tyszka-Czochara M., Zagrodzki P., Influence of selenium supplementation of fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. J. Food Sci. Technol. Mysore, 2015, 52, 4724–4736.

35. Paucar-Menacho L.M., Peñas E., Dueñas M., Frias J., Martinez-Villaluenga C., Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT – Food Sci. Technol., 2017, 76, SI, 245–252.

36. Peiretti P.G., Gai F., Tassone S., Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Anim. Feed Sci. Tech., 2013, 183, 56–61.

37. Pisariková B., Kracmar S., Herzig I., Amino acid contents and biological value of protein in various amaranth species. Czech J. Anim. Sci., 2005, 50, 169–174.

38. Repo-Carrasco R., Espinoza C., Jacobsen S-E., Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int., 2003, 19, 179–189.

39. Rocchetti G., Lucini L., Chiodelli G., Giuberti G., Montesano D., Masoero F., Trevisan M., Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int., 2017, 100, 69–77.

40. Ruales J., Nair B.M., Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods Hum. Nutr., 1992, 42, 1–11.

41. Schraer C.D., Risica P.M., Ebbesson S.O., Go O.T., Howard B.V., Mayer A.M., Low fasting insulin levels in Eskimos compared to American Indians: are Eskimos less insulin resistant? Int. J. Circum. Health, 1999, 58, 272–280.

42. Simopoulos A.P., The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., 2008, 233, 674–688.

43. Song A., Eckhoff S.R., Optimum popping moisture content for popcorn kernels of different sizes. Cereal Chem., 1994, 71, 458–460.

44. Tang Y., Li X., Chen P.X., Zhang B., Hernandez M., Zhang H., Marcone M.F., Liu R., Tsao R., Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem., 2015, 174, 502–508.

45. Tang Y., Li X., Chen P.X., Zhang B., Liu R., Hernandez M., Marcone M.F., Tsao R., Assessing the fatty acid, carotenoid, and to- copherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem., 2016, 64, 1103–1110.

46. Taylor J., Belton P., Beta T., Duodu K., Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci., 2014, 59, 257–275.

47. USDA. National nutrient database for standard reference. United States Department of Agriculture. 2016. Press Release 28.

48. Yablokov V.A., Smel’tsova I.L., Faerman, V.I., Thermal stability of amino acids. Russ. J. Gen. Chem., 2013, 83, 476–480.

49. Zapotoczny P., Markowski M., Majewska K., Ratajski A., Konopko H., Effect of temperature on the physical, functional, and mechanical characteristics of hot-air-puffed amaranth seeds. J. Food Eng., 2006, 76, 469–476.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information


IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760



CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 69
PDF Downloads 65 65 37