Improving Storability of Strawberries with Gaseous Chlorine Dioxide in Perforated Clamshell Packaging

Open access

Abstract

A chlorine dioxide generating pad has been used as postharvest treatment to maintain the quality and safety of strawberries in two different storage conditions. During the short storage time (3 days at 4°C + 2 days at 20°C) fruit treated with ClO2 maintained better quality parameters, as color, titratable acidity, total soluble solids, anthocyanins, antioxidant capacity and lower values of weight loss. During the long storage time (12 days at 2°C), the parameters related to postharvest quality were generally preserved and the effect of ClO2 was positive to reduce the total yeast and mold, except the last period of the experiment when the ClO2 gas-generating pad was probably exhausted. The sensory evaluation revealed that the sanitization with ClO2 maintained a global positive acceptance in particular during the short storage time. The results suggest that this treatment may be suitable to maintain the quality during short storage and long storage until 8 days and it may be an important alternative sanitizer thanks to the positive action against the yeast and mold without modifying the quality of the strawberries.

1. Aday M.S., Büyükcan M.B., Caner C., Maintaining the quality of strawberries by combined effect of aqueous chlorine dioxide with modified atmosphere packaging. J. Food Proc. Preserv., 2013, 37, 568-581.

2. Aday M.S., Caner C., The applications of ‘active packaging and chlorine dioxide’ for extended shelf life of fresh strawberries. Packag. Technol. Sci., 2011, 24, 123-136.

3. Appendini P., Hotchkiss J.H., Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol., 2002, 3, 113-126.

4. Bonarska-Kujawa D., Sarapuk J., Bielecki K., Oszmiański J., Kleszczyńska H., Antioxidant activity of extracts from apple, chokeberry and strawberry. Pol. J. Food Nutr. Sci., 2012, 62, 229-234.

5. Cao S., Hu Z., Pang B., Optimization of postharvest ultrasonic treatment of strawberry fruit. Post. Biol. Technol., 2010, 55, 3, 150-153.

6. Cheng G.W., Breen P.J., Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Am. Soc. Hort. Sci., 1991, 116, 865-869.

7. Chiabrando V., Giacalone G., Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr., 2015, 66, 248-253.

8. Colgecen I., Aday M.S., The effi cacy of the combined use of chlorine dioxide and passive modified atmosphere packaging on sweet cherry quality. Post. Biol. Technol., 2015, 109, 10-19.

9. Dervisi P., Lamb J., Zabetakis I., High pressure processing in jam manufacture: effects on textural and colour properties. Food Chem., 2001, 73, 1, 85-91.

10. Gomez-Lopez V.M., Rajkovic A., Ragaert P., Smigic N., Devlieghere F., Chlorine dioxide for minimally processed produce preservation: a review. Trends Food Sci. Technol., 2009, 20, 17-26.

11. Gonzalez-Molina E., Moreno D.A., García-Viguera C., Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J. Agric. Food Chem., 2008, 56, 1669-1675.

12. Guo Q., Lv X., Xu F., Zhang Y., Wang J., Lin H., Wu B., Chlorine dioxide treatment decreases respiration and ethylene synthesis in fresh-cut ‘Hami’melon fruit. Int. J. Food Sci. Technol., 2013, 48, 1775-1782.

13. Haffner K., Rosenfeld H.J., Skrede G., Wang L., Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharv. Biol. Technol., 2002, 24, 279-289.

14. Han Y., Linton R.H., Nielsen S.S., Nelson P.E., Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7°C. J. Food Prot., 2001, 64, 1730-1738.

15. Hernandez-Munoz P., Almenar E., Valle V.D., Velez D., Gavara R., Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria ananassa) quality during refrigerated storage. Food Chem., 2008, 110, 428-435.

16. Kalt W., Forney C.F., Martin A., Prior R.L., Antioxidant capacity, vitamin C, phenolics and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem., 1999, 47, 4638-4644.

17. Lopez-Gomez P.S., Palop F.A., Periago P.M, Martinez-Lopez A., Marin-Iniesta F., Barbosa-Canovas G.V., Food safety engineering: an emergent perspective. Food Eng. Rev., 2009, 1, 84-104.

18. Maas J.L., Compendium of Strawberry Diseases, APS Press, 1998, pp. 44-46.

19. Mahovic M.J., Tenney J.D., Bartz J.A., Applications of chlorine dioxide gas for control of bacterial soft rot in tomatoes. Plant Dis., 2007, 91, 1316-1320.

20. Mullen W., McGinn J., Lean M.E., MacLean M.R., Gardner P., Duthie G.G., Crozier A., Ellagitannins, fl avonoids and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J. Agric. Food Chem., 2002, 50, 5191-5196.

21. Napolitano M.J., Green B.J., Nicoson J.S., Margerum D.W., Chlorine dioxide oxidation of tyrosine, N-acetyltyrosine and dopa. Chem. Res. Toxicol., 2005, 18, 501-508.

22. Orak H.H., Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Sci. Hortic., 2007, 111, 235-241.

23. Peano C., Girgenti V., Giuggioli N., Change in quality and volatile constituents of strawberries (cv. Evie2) under MAP storage. J. Food Agric. Environ., 2014, 12, 93-100.

24. Pellegrini N., Serafi ni M., Colombi B., Del Rio D., Salvatore S., Bianchi M., Brighenti F., Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr., 2003, 133, 2812-2819.

25. Popa I., Hanson E.J.D., Todd E.C.D., Schilder A.C., Ryser E.T., Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries. J Food Prot., 2007, 70, 2084-2088.

26. Prior R.L., Cao G., Martin A., Sofi c E., McEwen J., O’Brien C., Mainlan C.M., Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of Vaccinium species. J. Agric. Food Chem., 1998, 46, 2686-2693.

27. Saengnil K., Chumyam A., Faiyue B., Uthaibutra J., Use of chlorine dioxide fumigation to alleviate enzymatic browning of harvested ‘Daw’ longan pericarp during storage under ambient conditions. Post. Biol. Technol., 2014, 91, 49-56.

28. Sanchez-Moreno C., Plaza L., De Ancos B., Cano M.P., Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. J. Sci. Food Agric., 2003, 83, 430-439.

29. Shin Y.J., Song H.Y., Song B.K., Effect of a combined treatment of rice bran protein film packaging with aqueous chlorine dioxide washing and ultraviolet-C irradiation on the postharvest quality of ‘Goha’ strawberries. J. Food Engin., 2012, 113, 374-379.

30. Sun X., Bai J., Ference C., Wang Z., Zhang Y., Narciso J., Zhou K., Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J. Food Prot., 2014, 77, 1127-1132.

31. Sy K.V., McWatters, K.H., Beuchat L.R., Efficacy of gaseous chlorine dioxide as a sanitizer for killing Salmonella, yeasts, and molds on blueberries, strawberries, and raspberries. J. Food Prot., 2005a, 68, 1165-1175.

32. Sy K.V., Murray M.B., Harrison M.D., Beuchat L.R., Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh-cut produce. J. Food Prot., 2005b, 68, 1176-1187.

33. Vanderzant C., Splittstoesser D.F., Compendium of Methods for the Microbiological Examination of Food. Splittstoesser Eds., 1992, Washington, DC.

34. Vargas M., Albors A., Chiralt A., González-Martínez C., Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings Post. Biol. Technol., 2006, 41, 164-171.

35. Wang Y., Wu J., Ma D., Ding J., Preparation of a cross-linked gelatin/bacteriorhodopsin film and its photochromic properties. Sci. China Chem., 2011, 54, 405-409.

36. Waterhouse A.L., Polyphenolics: Determination of total phenolics. 2002, in: Current Protocols in Food Analytical Chemistry (ed. R.E. Wrolstad). John Wiley & Sons, New York, U.S.A., pp. I1.1.1-I1.1.8.

37. Wu B., Guo Q., Wang G., Peng W., Wang J., Che F., Effects of different postharvest treatments on the physiology and quality of ‘Xiaobai’ apricots at room temperature. J. Food Sci. Technol., 2015, 52, 2247-2255.

38. Zhang L., Yan Z., Hanson E.J., Ryser E.T., Efficacy of chlorine dioxide gas and freezing rate on the microbiological quality of frozen blueberries. Food Contr., 2015, 47, 114-119.

39. Zhong M., Wu B., Wang J., Wu J., Wei L., Effect of chlorine dioxide on ripening of ‘Xiaobai’ apricots. Eur. Food Res. Technol., 2006, 223, 791-795.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information


IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760



CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 241 18
PDF Downloads 121 121 6