Phytonutrients in Oat (Avena sativa L.) Drink: Effect of Plant Extract on Antiradical Capacity, Nutritional Value and Sensory Characteristics

Open access


The purpose of this study was to design the formula and antioxidant potential of gluten-free oat drinks fortified with bioactive plant components. The paper describes the use of three preparations of plant origin: yellow tea leaf extract, mulberry extract and steviol glycosides from stevia leaves. Analyses of the oat drinks basic composition – including proteins, lipids, carbohydrates, dietary fiber fractions and antioxidant properties with DPPH, ABTS, ORAC and FRAP assays were conducted. Tea extract with steviosides oat drink showed the highest total phenolic concentration and the highest antioxidant activity followed by stevia and mulberry oat drink, whereas stevia oat drink showed the lowest phenolics level and weakest antioxidant activity. Moreover, the applied plant components showed moderate ability to influence the sensory values of the fortified oat drinks. The results demonstrate that tea, stevia and mulberry preparations applied in oat drinks enhanced antioxidant potential and might be a natural source of antioxidant components.

1. Alarcon E., Campos A.M., Edwards A.M., Lissi E., Lopez-Alcaron C., Antioxidant capacity of herbal infusions and tea extracts: a comparison of ORAC-fluorescein and ORAC-pyrogallol red methodologies. Food Chem., 2008, 107, 1114–1119.

2. AOAC. 1995. Official Methods of Analysis: Official Method for Protein. Method No. 920.87. Association of Official Analytical Chemists, Washington DC.

3. Bajerska J., Mildner-Szkudlarz S., Walkowiak J., Effects of rye bread enriched with green tea extract on weight maintenance and the characteristics of metabolic syndrome following weight loss: a pilot study. J. Med. Food, 2015, 18(6), 698–705.

4. Banu S., Jabir N.R., Manjunath N.C., Khan M.S., Ashraf G.M., Kamal M.A., Tabrez S., Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J. Biol. Sci., 2015, 22, 32–36.

5. Behall K.M., Scholfield D.J., Hallfrisch J., Comparison of hormone and glucose responses of overweight women to barley and oats. J. Am. Coll. Nutr., 2005, 24, 182–188.

6. Benzie F.F., Strain J.J., The Ferring Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal. Biochem., 1996, 239, 70–76.

7. Budryn G., Zyżelewicz D., Nebesny E., Oracz J., Krysiak W., Influence of addition of green tea and green coffee extracts on the properties of fine yeast pastry fried products. Food Res. Int., 2013, 50(1), 157–160.

8. Butt M.S., Tahir-Nadeem M., Kashif Iqbal Kham M., Shabir R., Butt M.S., Oat: unique among the cereals. Eur. J. Nutr., 2008, 47, 68–79.

9. Chang H-C., Huang C-N., Yeh D-M., Wang S-J., Peng C-H., Wang C-J., Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum. Nutr., 2013, 68, 18–23.

10. De S., Mondal S., Banerjee S., Stevioside Technology, Applications and Health. 2013, John Wiley and Sons, West Sussex, UK, 1st Edition, pp. 27–35.

11. Duodu K.G., Taylor J.R.N., Belton P.S., Hamaker B.R., Factors affecting sorghum protein digestibility. J. Cereal Sci., 2003, 38, 117–131.

12. Dziedzic K., Górecka D., Kucharska M., Przybylska B., Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Res. Int., 2012, 47, 279–283.

13. Emmons C.L., Peterson D.M., Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop Sci., 2001, 41, 1678–1681.

14. Ercisli S., Orhan E., Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem., 2007, 103, 1380–1384.

15. Gramza-Michałowska A., Kobus-Cisowska J., Kmiecik D., Korczak J., Helak B., Dziedzic K., Górecka D., Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem., 2016, 211, 448–454.

16. Gramza-Michałowska A., Caffeine in tea Camellia sinensis – content, absorption, benefits and risks of consumption. J. Nutr. Health Aging, 2014, 18, 143–149.

17. Gramza-Michałowska A., Sidor A., Reguła J., Kulczyński B., PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Acta Sci. Pol., Technol. Aliment., 2015, 14(4), 331–341.

18. Gregersen S., Jeppesen P.B., Holst J.J., Hermansen K., Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metab. Clin. Experim., 2004, 54, 73–76.

19. Hüttner E.K., Arendt E.K., Recent advances in gluten free baking and the current status of oats. Trends Food Sci. Tech., 2010, 21, 303–312.

20. ISO 11136:2014. Sensory analysis – Methodology – General guidance for conducting hedonic tests with consumers in a controlled area.

21. Jakobek L., Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem., 2015, 175, 556–567.

22. Jankun J., Al-Senaidy A., Skrzypczak-Jankun E., Can drinking black tea fight diabetes: literature review and theoretical indication. Centr. Eur. J. Immunol., 2012, 37, 167–172.

23. Kimura T., Nakagawa K., Kubota H., Goto Y., Yamagishi K., Oita S., Oikawa S., Mayazawa T., Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J. Agric. Food Chem., 2007, 55, 5869–5874.

24. Kmiecik D., Korczak J., Rudzińska M., Gramza-Michałowska A., Hęś M., Kobus-Cisowska J., Stabilization of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chem., 2015, 173, 966–971.

25. Kujawska M., Ewertowska M., Ignatowicz E., Adamska T., Szaefer H., Gramza-Michałowska A., Korczak J., Jodynis-Liebert J., Evaluation of safety and antioxidant activity of yellow tea (Camellia sinensis) extract for application in food. J. Med. Food, 2016, 19(3), 1–7.

26. Le Bourvellec C., Watrelot A.A., Ginies C., Imberty A., Renard C.M.G.C., Impact of processing on the noncovalent interactions between procyanidin and apple cell wall. J. Agric. Food Chem., 2012, 60(37), 9484–9494.

27. Nam S., Jang H.W., Shibamoto T., Antioxidant activities of extracts from teas prepared from medicinal plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata, and their volataile components. J. Agric. Food Chem., 2012, 60(36), 9097–90105.

28. Ndolo V.U., Beta T., Comparative studies on composition and distribution of phenolic acids in cereal grain botanical fractions. Cereal Chem., 2014, 91, 522–530.

29. Niidome T., Takahashi K., Goto Y., Goh S., Tanaka N., Kamei K., Ichida M., Hara S., Akaike A., Kihara T., Sugimoto H., Mulberry leaf extract prevents amyloid beta-peptide fibryl formation and neurotoxicity. Neuroreport, 2007, 18, 813–816.

30. Ozdal T., Capanoglu E., Altay F., A review on protein–phenolic interactions and associated changes. Food Res. Int., 2013, 51, 954–970.

31. Önning G., Wallmark K., Persson M., Akesson B., Elmstahl S., Oste R., Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Ann. Nutr. Metab., 1999, 43, 301–309.

32. Payne A., Mazzer A., Clarkson G.J.J., Taylor G., Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci. Nutr., 2013, 1(6), 439–444.

33. Pang G., Xie J., Chen Q., Hu Z., How functional foods play critical roles in human health. Food Sci. Hum. Well., 2012, 1, 26–60.

34. Peterson D.M., Oat antioxidants. J. Cereal Sci., 2001, 33, 115–129.

35. Polish Standard PN-EN ISO 3947:2001P. Starches, native or modified – determination of total fat content.

36. Polish Standard PN-A-79011–8:1998. Dry food mixes – test methods – determination of total ash content and ash insoluble in 10 percent (m/m) hydrochloric acid.

37. Prigent S.V.E., Voragen A.G.J., van Koningsveld G.A., Baron A., Renard C.M.G.J., Gruppen H., Interactions between globular proteins and procyanidins of different degrees of polymerization. J. Dairy Sci., 2009, 92, 5843–5853.

38. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med., 1999, 26, 1231–1237.

39. Rice-Evans C.A., Miller N.J., Paganga G., Structure – antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med., 1996, 20, 933–956.

40. Riou V., Vernhet A., Doco T., Moutounet M., Aggregation of grape seed tannins in model wine – effect of wine polysaccharides. Food Hydrocoll., 2002, 16(1), 17–23.

41. Roy M.K., Koide M., Rao T.P., Okubo T., Ogasawara Y., Juneja L.R., ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: relationship between total polyphenol and individual catechin content. Int. J. Food Sci. Nutr., 2010, 61(2), 109–124.

42. Sajilata M.G., Bajaj P.R., Singhal R.S., Tea polyphenols as nutraceuticals. Compr. Rev. Food Sci., 2008, 7, 229–254.

43. Sanchez-Moreno C., Larrauri J.A., Saura-Calixto F., A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 1998, 76, 270–276.

44. Shahidi F., Naczk M., Methods of analysis and quantification of phenolic compounds. 1995, in: Food Phenolic: Sources, Chemistry, Effects and Applications. Technomic Publishing Company, Lancaster/Pensylvania, USA, pp. 287–293.

45. Sun T., Xu Z., Godber J.S., Prinyawiwatkul W., Capabilities of oat extracts in inhibiting cholesterol and long chain fatty acid oxidation during heating. Cereal Chem., 2006, 83, 451–454.

46. Szakály Z., Szente V., Kövér, G., Polereczki Z., Szigeti O., The influence of lifestyle on health behavior and preference for functional foods. Appetite, 2012, 58, 406–413.

47. Tadhani M.B., Patel V.H., Subhash R., In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J. Food Comp. Anal., 2007, 20, 323–329.

48. Thabti I., Elfalleh W., Hannachi H., Ferchichi A., Da Graca Campos M., Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J. Funct. Foods, 2012, 4, 367–374.

49. Vichasilp C., Nakagawa K., Sookwong P., Higuchi O., Luemunkong S., Miyazawa T., Development of high 1-deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea-making conditions for highest DNJ extraction. LWT – Food Sci. Technol., 2012, 45, 226–232.

50. Yen G.C., Chen H.Y., Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem., 1995, 43, 27–32.

51. Yu L., Perret J., Davy B., Wilson J., Melby C.L., Antioxidant properties of cereal products. J. Food Sci., 2002, 67, 2600–2603.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2018: 1.92

SCImago Journal Rank (SJR) 2018: 0.621
Source Normalized Impact per Paper (SNIP) 2018: 0.908


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 633 504 19
PDF Downloads 309 276 11