Evaluation of High Fibers Okara and Soybean Bran as Functional Supplements for Mice with Experimentally Induced Type 2 Diabetes

Open access


The objective of this study was to evaluate and compare the anti–diabetic efficacy of feeding diets supplemented with okara and soybean bran to ICR mice with experimentally–induced type 2 diabetes. While okara and soybean bran are from the same source, there is no performed research comparing the effects of these soybean byproducts on glycemic status. Normal and streptozotocin–induced type 2 diabetic ICR mice were assigned either to a normal diet in the normal control group, a high fat diet only in the diabetic control group, a high fat diet supplemented with 15% okara in the okara group, a high fat diet supplemented with 15% soybean bran in the soybean bran group or a high–fat diet supplemented with 0.1% metformin in the metformin group for 8 weeks. The biochemical parameters, the organs relative weights and liver histological structure of mice were determined. Okara was significantly effective in controlling hyperglycemia and improving glucose tolerance. Moreover, the antihyperglycemic effect of okara was broadly comparable with the actions of metformin. Feeding okara and soybean bran caused hypolipidemic effects. In addition, they had a strong cytoprotective effect on hepatocytes. Soybean bran seemed more efficient than okara in alleviating hepatic cell histological changes. Results demonstrated the potential benefit of okara and soybean bran in glycemic control and reducing the risk of type 2 diabetes complications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ahmad A. Hayat I. Arif S. Masud T. Khalid N. Ahmed A. Mechanisms involved in the therapeutic effects of soybean (Glycine Max). Int. J. Food Prop. 2014 17 1332–1354.

  • 2. Ahmad L. Hassan D. Hemeda H. Antihyperglycemic effects of okara corn hull and their combination in alloxan induced diabetic rats. World Appl. Sci. J. 2010 9 10 1139–1147.

  • 3. Ajay K. Athiny X. Navin K. Rakesh K. Soybean constituents and their functional benefits. 2011 in: Opportunity Challenges and Scope of Natural Products in Medicinal Chemistry (ed. V.K. Tiwari). Research Signpost Kerala India pp. 367–383.

  • 4. Amer N. Effects of soybean seed on glucose levels lipid profiles and histological structures of the liver in alloxan–induced diabetic albino rats. Tikrit J. Pure Sci. 2012 17 1–5.

  • 5. Anderson J.W. Ward K. High–carbohydrate high–fiber diets for insulin–treated men with diabetes mellitus. Am. J. Clin. Nutr. 1979 32 2312–2321.

  • 6. Bardini G. Rotella C.M. Giannini S. Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta–cell dysfunction on micro–and macrovascular complications. Rev. Diabet. Stud. 2012 9 82–93.

  • 7. Cani P.D. Daubioul C.A. Reusens B. Remacle C. Catillon G. Delzenne N.M. Involvement of endogenous glucagon–like peptide–1 (7–36) amide on glycaemia–lowering effect of oligo-fructose in streptozotocin–treated rats. J. Endocrinol. 2005 185 457–465.

  • 8. Cannon M. Flenniken A. Track N.S. Demonstration of acute and chronic effects of dietary fibre upon carbohydrate metabolism. Life Sci. 1980 27 1397–1401.

  • 9. Chang J.H. Kim M.S. Kim T.W. Lee S.S. Effects of soybean supplementation on blood glucose plasma lipid levels and erythrocyte antioxidant enzyme activity in type 2 diabetes mellitus patients. Nutr. Res. Pract. 2008 2 152–157.

  • 10. Chen P. Zhang Q. Dang H. Liu X. Tian F. Zhao J. Chen Y. Zhang H. Chen W. Antidiabetic effect of Lactobacillus casei CCFM0412 in high–fat–fed streptozotocin–induced type 2 diabetic mice. Nutrition 2014 30 1061–1068.

  • 11. Chung S.I. Rico C.W. Kang M.Y. Comparative study on the hypoglycemic and antioxidative effects of fermented paste (doenjang) prepared from soybean and brown rice mixed with rice bran or red ginseng marc in mice fed with high–fat diet. Nutrients 2014 6 4610–4624.

  • 12. Cicek B. Arslan P. Fahretti K. The effects of oligofrutose and polydextrose on metabolic control parameters in type–2 diabetes. Pak. J. Med. Sci. 2009 25 573–578.

  • 13. Correia S. Carvalho C. Santos M.S. Seica R. Oliveira C.R. Moreira P.I. Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini. Rev. Med. Chem. 2008 8 1343–1354.

  • 14. Dahlén E.M. Länne T. Engvall J. Lindström T. Grodzinsky E. Nystrom F. Östgren C.J. Carotid intima-media thickness and apolipoprotein B/apolipoprotein A-I ratio in middle-aged patients with type 2 diabetes. Diabet. Med. 2009 26 384–390.

  • 15. Dueñas M. Hernández T. Robredo S. Lamparski G. Estrella I. Muñoz R. Bioactive phenolic compounds of soybean (Glycine max cv. Merit): modifications by different microbiological fermentations. Pol. J. Food Nutr. Sci. 2012 62 241–250.

  • 16. El Rahman A.M.A. Hypoglycemic and hypolipidemic effect of fenugreek in different forms on experimental rats. World Appl. Sci. J. 2014 29 7 835–841.

  • 17. Han S. Jiao J. Zhang W. Xu J. Wan Z. Zhang W. Gao X. and Qin L. Dietary fiber prevents obesity–related liver lipotoxicity by modulating sterol–regulatory element binding protein pathway in C57BL/6J mice fed a high–fat/cholesterol diet. Sci. Rep. 2015 5 15256.

  • 18. Hannan J.M. Ali L. Rokeya B. Khaleque J. Akhter M. Flatt P.R. Abdel–Wahab Y.H. Soluble dietary fibre fraction of Trigonella foenum–graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption and enhancing insulin action. Br. J. Nutr. 2007 97 514–521.

  • 19. He B. Nohara K. Ajami N.J. Michalek R.D. Tian X. Wong M. Losee–Olson S.H. Petrosino J.F. Yoo S.–H. Shimomura K. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Sci. Rep. 2015 5 10604.

  • 20. Hosokawa M. Katsukawa M. Tanaka H. Fukuda H. Okuno S. Tsuda K. Iritani N. Okara ameliorates glucose tolerance in GK rats. J. Clin. Biochem. Nutr. 2016 58 216–222.

  • 21. Ismaiel M. Yang H. Min C. Dietary fiber role in type 2 diabetes prevention. Br. Food J. 2016 118 961–975.

  • 22. Jin L. Tu J. Jia J. An W. Tan H. Cui Q. Li Z. Drug–repurposing identified the combination of trolox C and cytisine for the treatment of type 2 diabetes. J. Transl. Med. 2014 12 153.

  • 23. Kaneto H. Katakami N. Matsuhisa M. Matsuoka T.–A. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010 2010 453892.

  • 24. Kavey R.–E.W. Allada V. Daniels S.R. Hayman L.L. McCrindle B.W. Newburger J.W. Parekh R.S. Steinberger J. Cardiovascular risk reduction in high–risk pediatric patients: a scientific statement from the american heart association expert panel on population and prevention science; the councils on cardiovascular disease in the young epidemiology and prevention nutrition physical activity and metabolism high blood pressure research cardiovascular nursing and the kidney in heart disease; and the interdisciplinary working group on quality of care and outcomes research: endorsed by the American Academy of Pediatrics. Circulation 2006 114 2710–2738.

  • 25. Kiehm T.G. Anderson J.W. Ward K. Beneficial effects of a high carbohydrate high fiber diet on hyperglycemic diabetic men. Am. J. Clin. Nutr. 1976 29 895–899.

  • 26. Kim H.–S. Yu O.–K. Byun M.–S. Cha Y.–S. Okara a soybean by–product prevents high–fat diet–induced obesity and improves serum lipid profiles in C57BL/6J mice. Food Sci. Biotechnol. 2016 25 607–613.

  • 27. Kim S.M. Rico C.W. Lee S.C. Kang M.Y. Modulatory effect of rice bran and phytic acid on glucose metabolism in high–fat–fed C57BL/6N mice. J. Clin. Biochem. Nutr. 2010 47 12–17.

  • 28. Klover P.J. Mooney R.A. Hepatocytes: critical for glucose homeostasis. Int. J. Biochem. Cell. Biol. 2004 36 753–758.

  • 29. Lee Y.A. Cho E.J. Yokozawa T. Effects of proanthocyanidin preparations on hyperlipidemia and other biomarkers in mouse model of type 2 diabetes. J. Agric. Food Chem. 2008 56 7781–7789.

  • 30. Lemes S.F. Lima F.M. de Almeida A.P.C. Ramalho A.d.F.S. de Lima Reis S.R. Michelotto L.F. Amaya–Farfán J. Carneiro E.M. Boschero A.C. Latorraca M.Q. Nutritional recovery with okara diet prevented hypercholesterolemia hepatic steatosis and glucose intolerance. Int. J. Food Sci. Nutr. 2014 65 745–753.

  • 31. Li F. Zhang Y. Zhong Z. Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin–induced diabetic mice. Int. J. Mol. Sci. 2011 12 6135–6145.

  • 32. Lim S.–I. Lee B.–Y. Anti–diabetic effect of material fermented using rice bran and soybean as the main ingredient by Bacillus sp. J. Korean Soc. Appl. Biol. Chem. 2010 53 222–229.

  • 33. Lu F. Liu Y. Li B. Okara dietary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Diet. Fibre 2013 2 126–132.

  • 34. Madar Z. Effect of brown rice and soybean dietary fiber on the control of glucose and lipid metabolism in diabetic rats. Am. J. Clin. Nutr. 1983 38 388–393.

  • 35. Mahalko J.R. Sandstead H.H. Johnson L.K. Inman L.F. Milne D.B. Warner R.C. Haunz E.A. Effect of consuming fiber from corn bran soy hulls or apple powder on glucose tolerance and plasma lipids in type II diabetes. Am. J. Clin. Nutr. 1984 39 25–34.

  • 36. Moodley K. Joseph K. Naidoo Y. Islam S. Mackraj I. Antioxidant antidiabetic and hypolipidemic effects of Tulbaghia violacea harv. (wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complement Altern. Med. 2015 15 408.

  • 37. Murotomi K. Umeno A. Yasunaga M. Shichiri M. Ishida N. Koike T. Matsuo T. Abe H. Yoshida Y. Nakajima Y. Oleuropein–rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse. J. Agric. Food Chem. 2015 63 6715–6722.

  • 38. Murtaza N. Baboota R.K. Jagtap S. Singh D.P. Khare P. Sarma S.M. Podili K. Alagesan S. Chandra T. Bhutani K. Finger millet bran supplementation alleviates obesity–induced oxidative stress inflammation and gut microbial derangements in high–fat diet–fed mice. Br. J. Nutr. 2014 112 1447–1458.

  • 39. Nam H. Jung H. Karuppasamy S. Park Y.S. Cho Y.S. Lee J.Y. Seong S.–I. Suh J.G. Anti–diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci. Biotechnol. 2012 21 1669–1676.

  • 40. Préstamo G. Rupérez P. Espinosa–Martos I. Villanueva M.J. Lasunción M.A. The effects of okara on rat growth cecal fermentation and serum lipids. Eur. Food Res. Technol. 2007 225 925–928.

  • 41. Schroeder N. Marquart L.F. Gallaher D.D. The role of viscosity and fermentability of dietary fibers on satiety–and adiposity–related hormones in rats. Nutrients 2013 5 2093–2113.

  • 42. Surel O. Couplet B. Influence of the dehydration process on active compounds of okara during its fractionation. J. Sci. Food Agric. 2005 85 1343–1349.

  • 43. Teoh S.L. Latiff A.A. Das S. A histological study of the structural changes in the liver of streptozotocin–induced diabetic rats treated with or without Momordica charantia (bitter gourd). Clin. Ter. 2008 160 283–286.

  • 44. Tolman K.G. Fonseca V. Dalpiaz A. Tan M.H. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 2007 30 734–743.

  • 45. Tucker A.J. Vandermey J.S. Robinson L.E. Graham T.E. Bakovic M. Duncan A.M. Effects of breads of varying carbohydrate quality on postprandial glycaemic incretin and lipidaemic response after first and second meals in adults with diet–controlled type 2 diabetes. J. Funct. Foods 2014 6 116–125.

  • 46. Villanueva M. Yokoyama W. Hong Y. Barttley G. Rupérez P. Effect of high–fat diets supplemented with okara soybean by–product on lipid profiles of plasma liver and faeces in syrian hamsters. Food Chem. 2011 124 72–79.

  • 47. Xu B.–Q. Yang P. Zhang Y.–Q. Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice. Food Nutr. Res. 2015 59 29652.

  • 48. Yogo T. Ohashi Kunihiko Terakado Y. Harada Y. Nezu Y. Hara Y. Tagawa M. Kageyama H. Fujisawa T. Influence of dried okara–tempeh on the composition and metabolites of fecal microbiota in dogs. Int. J. Appl. Res. Vet. Med. 2011 9 176–183.

  • 49. Zheng J. Shen N. Wang S. Zhao G. Oat beta–glucan ameliorates insulin resistance in mice fed on high–fat and high–fructose diet. Food Nutr. Res. 2013 57 22754.

Journal information
Impact Factor

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2018: 1.92

SCImago Journal Rank (SJR) 2018: 0.621
Source Normalized Impact per Paper (SNIP) 2018: 0.908

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 599 290 8
PDF Downloads 340 157 4