Evaluation of Seasonal Variations in the Glucosinolate Content in Leaves and Roots of Four European Horseradish (Armoracia rusticana) Landraces

Open access


In comparison with other cruciferous vegetables, horseradish has rarely been the object of scientific research, and the knowledge about the composition, content and distribution of glucosinolates (GLS) in different organs of horseradish plants is limited. Therefore, the aim of this study was to evaluate changes in the GLS content in leaves and roots of four horseradish landraces during the growing season.

The presence of 13 GLS was determined in the examined horseradish tissues, and glucoraphanin, glucoraphenin and napoleiferin were noted for the first time in the species. During the growing season, the content of individual GLS changed significantly. The rate and direction of these changes varied across the examined landraces and plant organs. In the leaves, between May and June, the content of sinigrin, the main GLS in all horseradish landraces, decreased in Bavarian (40%) and Hungarian (11%) horseradish, increased (22%) in Creamy horseradish, whereas in Danish horseradish, the difference was not significant. Despite the changes observed in the first two months, the highest content of sinigrin was noted in July in all horseradish landraces. During the growing season (August-October), the content of sinigrin fluctuated in the roots of Creamy and Danish landraces, reaching the highest level in October and September, respectively, whereas in the roots of Hungarian and Bavarian landraces, sinigrin concentrations continued to increase and peaked in October. Changes in the content of other, minor GLS during the growing season often differed from those noted in sinigrin levels.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Agerbirk N. Olsen C.E. Glucosinolate structures in evolution. Phytochemistry 2012 77 16–45.

  • 2. Agneta R. Lelario F. De Maria S. Möllers C. Bufo S.A. Rivelli A.R. Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry 2014 106 178–187.

  • 3. Agneta R. Mollers C. Rivelli A.R. Horseradish (Armoracia rusticana) a neglected medical and condiment species with a relevant glucosinolate profile: a review. Genet. Resour. Crop Evol. 2013 60 1923–1943.

  • 4. Agneta R. Rivelli A.R. Ventrella E. Lelario F. Sarli G. Bufo S.A. Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI–hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation. J. Agric. Food Chem. 2012 60 7474–7482.

  • 5. Alnsour M. Influence of exogenous factors on glucosinolate accumulation in horseradish (Armoracia rusticana Gaertn. Mey. & Scherb.). PhD thesis. Braunschweig University of Technology 2013. [http://rzbl04.biblio.etc.tu-bs.de:8080/docportal/servlets/MCRFileNodeServlet/DocPortal_derivate_00029574/Thesis.pdf;jsessionid=1B8F50A662E70ABEC049B33955733266].

  • 6. Appel H.M. Cocroft R.B. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 2014 175 1257–1266.

  • 7. Chen S. Andreasson E. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 2001 39 743–758.

  • 8. Chen S.X. Petersen B.L. Olsen C.E. Schulz A. Halkier B.A. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol. 2001 127 194–201.

  • 9. Ciska E. Honke J. Kozłowska H. Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard red radish white radish and rapeseed. J. Agric. Food Chem. 2008 56 9087–9093.

  • 10. Ciska E. Martyniak-Przybyszewska B. Kozłowska H. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 2000 48 2862–2867.

  • 11. Ciska E. Pathak D. Glucosinolate derivatives in stored fermented cabbage. J. Agric. Food Chem. 2004 52 7938–7943.

  • 12. Cleemput S. Becker H. Genetic variation in leaf and stem glucosinolates in resynthesized lines of winter rapeseed (Brassica napus L.). Gen. Res. Crop Evol. 2012 59 539–546.

  • 13. Commission of the European Communities (1990). Commission Regulation (EC) No 1864/90 of 29 June 1990 amending Regulation (EEC) No 147/68 on the drawing and reduction of samples and on methods of analysis in respect of oil seed. Brussels: Official Journal of the European Communities. L 170/27-L 170/34.

  • 14. De Maria S. Agneta R. Lelario F. Möllers C. Rivelli A.R. Influence of nitrogen and sulfur fertilization on glucosinolate content and composition of horseradish plants harvested at different development stages. Acta Physiol. Plant 2016 38 91.

  • 15. Fahey J.W. Zalcmann A.T. Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001 56 5−51.

  • 16. Grob K. Matile P. Capillary GC of glucosinolate-derived horse-radish constituents. Phytochemistry 1980 19 1789–1793.

  • 17. Hanschen F.S. Herz C. Schlotz N. Kupke F. Bartolome Rodriguez M.M. Schreiner M. Rohn S. Lamy E. The Brassica epithionitrile 1-cyano-23-epithiopropane triggers cell death in human liver cancer cells in vitro. Mol. Nutr. Food Res. 2015 59 2178–2189.

  • 18. Higdon J.V. Delage B. Williams D.E. Dashwood R.H. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007 55 224–36.

  • 19. Horbowicz M. Rogowska M. Content of isothiocyanates and flavonols in roots during vegetation of two types horseradish. Veg. Crops Res. Bull. 2006 65 95–104.

  • 20. Huseby S. Koprivova A. Lee B.R. Saha S. Mithen R. Wold A.B. Bengtsson G.B. Kopriva S. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot. 2013 64 1039–1048.

  • 21. Ishida M. Hara M. Fukino N. Kakizaki T. Morimitsu Y. Glucosinolate metabolism functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci. 2014 64 48–59.

  • 22. Jørgensen M.E. Nour-Eldin H.H. Halkier B.A. Transport of defense compounds from source to sink: lessons learned from glucosinolates. Trends Plant Sci. 2015 20 508–514.

  • 23. Kosson H. Horbowicz M. Some quality characteristics including isothiocyanates content in horseradish cream as affected by storage period. Veg. Crops Res. Bull. 2009 71 123–132.

  • 24. Li X. Kushad M.M. Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). J. Agric. Food Chem. 2004 52 6950–6955.

  • 25. Li Y.C. Kiddle G. Bennett R. Doughty K. Wallsgrove R. Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L. Ann. Appl. Biol. 1999 134 131–136.

  • 26. Madsen S.R. Olsen C.E. Nour-Eldin H.H. Elucidating the role of transport processes in leaf glucosinolate distribution. Plant Physiol. 2014 166 1450–1462.

  • 27. Magrath R. Bano F. Morgner M. Parkin I. Sharpe A. Lister C. Dean C. Turner J. Lydiate D. Mithen R. Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 1994 72 290–299.

  • 28. Mevy J.P. Rabier J. Quinsac A. Krouti M. Ribaillier D. Glucosinolate contents of regenerated plantlets from embryoids of horseradish. Phytochemistry 1997 44 1469–1471.

  • 29. Mølmann J.A.B. Steindal A.L.H. Bengtsson G.B. Seljasen R. Lea P. Skaret J. Johansen T.J. Effects of temperature and photoperiod on sensory quality and contents of glucosinolates flavonols and vitamin C in broccoli florets. Food Chem. 2015 172 47–55.

  • 30. Redovniković R.I. Peharec P. Krsnik-Rasol M. Delonga K. Brkić K. Vorkapić-Furač J. Glucosinolate profiles myrosinase and peroxidase activity in horseradish (Armoracia lapathifolia Gilib.) plantlets tumour and teratoma tissues. Food Technol. Biotech. 2008 46 317−321.

  • 31. Sampliner D. Miller A. Ethonobotany of horseradish (Armoracia rusticanaBrassicaceae) and its wild relatives (Armoracia ssp.): reproductive biology and local uses in their native ranges. Econ. Bot. 2009 63 303–313.

  • 32. Shin I.S. Masuda H. Naohide K. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int. J. Food Microbiol. 2004 94 255–261.

  • 33. Tanii H. Higashi T. Nishimura F. Higuchi Y. Saijoh K. Effects of cruciferous allyl nitrile on phase 2 antioxidant and detoxification enzymes. Med. Sci. Mon. 2008 14 189–92.

  • 34. Wagner A.E. Boesch-Saadatmandi C. Dose J. Schultheiss G. Rimbach G. Anti-inflammatory potential of allyl isothiocyanate – role of Nrf2 NF-κB and microRNA-155. J. Cell Mol. Med. 2012 16 836–843.

  • 35. Wedelsbäck Bladh K. Olsson K.M. Introduction and use of horseradish (Armoracia rusticana) as food and medicine from antiquity to the present: emphasis on the Nordic countries. J. Herbs Spices Med. Plants 2011 17 197–213.

  • 36. Wedelsbäck Bladh K. Olsson K.M. Yndgaard F. Evaluation of glucosinolates in Nordic horseradish (Armoracia rusticana). Bot. Lithuanica 2013 19 48–56.

  • 37. Xiao D. Srivastava S.K. Lew K.L. Zeng Y. Hershberger P. Johnson C.S. Trump D.L. Singh S.V. Allyl isothiocyanate a constituent of cruciferous vegetables inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 2003 24 891–897.

  • 38. Zhang Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res. 2010 54 127–135.

Journal information
Impact Factor

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2018: 1.92

SCImago Journal Rank (SJR) 2018: 0.621
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 272 8
PDF Downloads 171 112 3