Effect of Physical Osmosis Methods on Quality of Tilapia Fillets Processed by Heat Pump Drying

Open access

Abstract

In order to achieve the influence of different pretreatment methods on heat pump dried tilapia fillets, the effects of trehalose, ultrasound-assisted and freeze-thaw cycle assisted osmotic dehydration on the color, rehydration, texture and Ca2+-ATPase activity were investigated. Tilapia fillets (100 mm length × 50 mm width × 5 mm height) were first osmoconcentrated in a trehalose solution combined with 4°C under atmospheric pressure for 1 h, different power of ultrasound and freeze-thawing respectively, then heat pump dried. The results showed that under the same drying method, the comprehensive score of ultrasound in 400 Watt was best, compared to freeze-thaw, the ultrasound pretreatment had a significant (p<0.05) effect on the color and Ca2+-ATPase activity, but had no significant (p>0.05) effect on the rehydration and texture. However, both of them significantly (p<0.05) affected the quality in comparison to that of osmosis at 4°C. It indicates that suitable ultrasonic pretreatment conditions improve the quality of dried products effectively and the conclusion of this research provides reference for heat pump dried similar products.

1. Bai J.W., Sun D.W., Xiao H.W., Mujumdar A.S., Gao Z.J., Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innov. Food Sci. Emerg. Technol., 2013, 20, 230–237.

2. Bhaskaracharya R.K., Kentish S., Ashokkumar M., Selected applications of ultrasonics in food processing. Food Eng. Rev., 2009, 1, 31–49.

3. Cataldo A., Cannazza G., De Benedetto E., Severini C., Derossi A., An alternative method for the industrial monitoring of osmotic solution during dehydration of fruit and vegetables: A testcase for tomatoes. J. Food Eng., 2011, 105,186–192.

4. Contreras C., Martín M.E., Martínez-Navarrete N., Chiralt A., Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT – Food Sci. and Technol., 2005, 38, 471–477.

5. Deng Y., Liu Y.M., Qian B.J., Su S.Q., Wu J., Song X.Y., Yang H.S., Impact of far-infrared radiation-assisted heat pump drying on chemical compositions and physical properties of squid (Illex illecebrosus) fillets. Eur. Food Res. Technol., 2011, 232, 761–768.

6. Deng Y., Zhao Y.Y., Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT – Food Sci. Technol., 2008, 41, 1575–1585.

7. Derossi A., Severini C., Del Mastro A., De Pilli T., Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach. LWT – Food Sci. Technol., 2015, 60, 641–648.

8. De Santos F., Rojas M., Lockhorn G., Brewer M.S., Effect of carbon monoxide in modified atmosphere packaging, storage time and endpoint cooking temperature on the internal color of enhanced pork. Meat Sci., 2007, 77, 520–528.

9. Duan Z.H., Jiang L.N., Wang J.L., Yu X.Y., Wang T., Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating. Food Bioprod. Process, 2011, 89, 472–476.

10. Fathi M., Mohebbi M., Razavi S.M.A., Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm. Food Bioprod. Process, 2011, 4, 1519–1526.

11. Fernandes F.A.N., Rodrigues S., Ultrasound as pre-treatment for drying of fruits: dehydration of banana. J. Food Eng., 2007, 82, 261–267.

12. Gamboa-Santos J., Montilla A., Cárcel J.A., Vilamiel M., Garcia-Perez J.V., Air-borne ultrasound application in the convective drying of strawberry. J. Food Eng., 2014, 128, 132–139.

13. Guan Z.Q., Wang X.Z., Li M., Jiang X.Q., Mathematical modeling on hot air drying of thin layer fresh tilapia fillets. Pol. J. Food Nutr. Sci., 2013, 63, 25–34.

14. Hu Q., Zhang M., Mujumdar A.S., Du Wei-Hue, Sun J.C., Effects of different drying methods on the quality changes of granular edamame. Drying Technol., 2006, 24, 1025–1032.

15. Kowalski S.J., Szadzinska J., Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chem. Eng. Proc., 2014, 82, 65–70.

16. Lewicki P.P., Design of hot air drying for better foods. Trends Food Sci. Technol., 2006, 17, 153–163.

17. Li M., Guan Z.Q., Liu L., Optimization of heat pump drying process of tilapia fillet by secondary multiple regression analytical method. J. Refrig., 2011, 32, 58–62.

18. Mandala I.G., Anagnostaras E.F., Oikonomou C.K., Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J. Food Eng., 2005, 69, 307–316.

19. Mittal M., Roper III J.A., Jackson C.L., Monaghan G.G., Francis L.F., Effects of freezing and thawing on the microstructure of latex paints. J Coll. Interf. Sci., 2013, 392,183–193.

20. Nowacka M., Tylewicz U., Laghi L., Dalla Rosa M., Witrowa-Rajchert D., Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem., 2014, 144, 18–25.

21. Nowacka M., Wiktor A., Śledź M., Jurek N., Witrowa-Rajchert D., Drying of ultrasound pretreated apple and its selected physical properties. J. Food Eng., 2012, 113, 427–433.

22. Oliveira F.I.P., Gallão M.I., Rodrigues S., Fernandes Fabiano A.N., Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food Bioproc. Technol., 2011, 4, 610–615.

23. Ortiz J., Lemus-Mondaca R., Vega-Gálvez A., Ah-Hen K., Puente-Diaz L., Zura-Bravo L., Aubourg S., Influence of air-drying temperature on drying kinetics, colour, firmness, and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem., 2013, 139,162–169.

24. Ozuna C., Cárcel J.A., Walde P.M., Garcia-Perez J.V., Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innov. Food Sci. Emerg. Technol., 2014, 23, 146–155.

25. Prothon F., Ahrné L., Sjöholm I., Mechanisms and prevention of plant tissue collapse during dehydration: a critical review. Crit. Rev. Food Sci. Nutr., 2003, 43, 447–479.

26. Rodríguez Ó., Santacatalina J.V., Simal S., Garcia-Perez J.V., Femenia A., Rossello C., Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. J. Food Eng., 2014, 129, 21–29.

27. Schössler K., Jäger H., Knorr D., Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov. Food Sci. Emerg. Technol., 2012a, 16, 113–120.

28. Schössler K., Thomas T., Knorr D., Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Res. Int., 2012b, 49, 425–431.

29. Souraki B.A., Ghavami M., Tondro H., Mass transfer during osmotic dehydration of green bean in salt solution: a polynomial approximation approach. Food Bioprod. Process, 2013, 91, 257–263.

30. Witrowa-Rajchert D., Rząca M., Effect of drying method on the microstructure and physical properties of dried apples. Drying Technol., 2009, 27, 903–909.

31. Zielinska M., Sadowski P., Błaszczak W., Freezing/thawing and microwave assisted drying of blueberries (Vaccinium corymbosum L.). LWT – Food Sci. Technol., 2015, 62, 555–563.

32. Zou K.J., Teng J.W., Huang L., Dai X.W., Wei B.Y., Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT – Food Sci. Technol., 2013, 51, 253–259.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information


IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760



CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 166 20
PDF Downloads 109 109 15