Evaluation of the Organic Acids Ability for Extraction of Anthocyanins and Phenolic Compounds from Different Sources and Their Degradation Kinetics During Cold Storage

Open access

Abstract

The study of anthocyanin and phenolic acids has always received much attention due to their extensive range of colors and potential beneficial health effects. In this study extraction of anthocyanins from barberry, eggplant peel and red cabbage was investigated by using different organic solvents. Soluble solid content, antioxidant capacity, total monomeric anthocyanins and total phenolic content were determined and then degradation kinetics of anthocyanin in different solution during freezing process was assayed. In order to examine the effect of different acids on the degree of extraction of anthocyanin and total phenol, varied concentration of hydrochloric, citric and acetic acids were dissolved in a mixture of water and ethanol to prepare acidified aqueous solution. Results indicated that citric acid solution is one of the best solvents for phenolic and anthocyanin extraction which showed the best scavenging activity of DPPH radical. Results from degradation kinetics of total monomeric anthocyanins revealed that stability of anthocyanins in the solution depended on temperature and other ingredients which are present in the medium. Moreover, the present data confirmed that barberry and red cabbage acidified extracts could be one of the more stable natural food colorants based on anthocyanins.

REFERENCES

  • 1.

    Akbulut M., Calisir S., Marakoglu T., Coklar H., Some physicomechanical and nutritional properties of Berberis vulgaris L. fruits. J. Food Process. Eng., 2009, 32, 479–511.

  • 2.

    Astadi I.R., Astuti M., Santoso U., Nugraheni P.S., In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem., 2009, 112, 659–663.

  • 3.

    Berenji Ardestani S., Sahari Ali M., Barzegar M., Abbasi S., Some physicochemical properties of Iranian native barberry fruits (abi and poloei): Berberis integerrima and Berberis vulgaris. J. Food Pharm. Sci., 2013, 1, 60–67.

  • 4.

    Boulekbache-Makhlouf L., Medouni L., Medouni-Adrar S., Arkoub L., Madani K., Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind. Crop. Prod., 2013, 49, 668– 674.

  • 5.

    Boulton R., The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am. J. Enol. Vitic., 2001, 52, 67–87.

  • 6.

    Cao S.Q., Liu L., Pan S.Y., Thermal degradation kinetics of anthocyanins and visual color of blood orange juice. Agric. Sci. China, 2011, 10, 1992–1997.

  • 7.

    Castaneda-Ovando A., Pacheco-Hernandez L., Paez-Hernandez E., Rodriguez J.A., Galan-Vidal C.A., Chemical studies of anthocyanins: a review. Food Chem., 2009, 113, 859–871.

  • 8.

    Chandrasekhar J., Madhusudhan M.C., Raghavarao K.S.M.S., Extraction of anthocyanins from red cabbage and purification using adsorption. Food Bioprod. Process., 2012, 90, 615–623.

  • 9.

    Charron C.S., Kurilich A.C., Clevidence B.A., Simon P.W., Harrison D.J., Britz S.J., Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. J. Agric. Food Chem., 2009, 57, 1226–1230.

  • 10.

    Chen Z., Bertin R., Froldi G., EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem., 2013, 138, 414–420.

  • 11.

    Concellón A., Anon M., Chaves A.R., Effect of low temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.). LWT – Food Sci. Technol., 2007, 40, 389–396.

  • 12.

    Eun-Ju J., Myung-Suk B., Eun-Kyung J., Young-Hong J., Seung-Cheol L., Antioxidant activity of different parts of eggplant. J. Med. Plants Res., 2011, 18, 5, 4610–4615.

  • 13.

    Fleschhut J., Kratzer F., Rechkemmer G., Kulling S.E., Stability and biotransformation of various dietary anthocyanins in vitro. Eur. J. Nut., 2006, 45(1), 7–18.

  • 14.

    Forbes-Hernandez T.Y., Giampieri F., Gasparrini M., Mazzoni L., Quiles J.L., Alvarez-Suarez J.M., Battino M., The effects of bioactive compounds from plant foods on mitochondrial function: A focus on apoptotic mechanisms. Food Chem. Toxicol., 2014, 68, 154–182.

  • 15.

    Gallo M., Naviglio, D., Ferrara L., Nasunin, an antioxidant anthocyanin from eggplant peels, as natural dye to avoid food allergies and intolerances. Eur. Sci. J., 2014, 10, 9, 158–167.

  • 16.

    Garna H., Mabon N., Wathelet B., Paquot M., New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains. J. Agri. Food Chem., 2004, 52, 4652–4659.

  • 17.

    Giampieri F., Alvarez-Suarez J.M., Battino M., Strawberry and Human Health: Effects beyond antioxidant activity. J. Agric. Food Chem., 2014a, 62, 3867–3876.

  • 18.

    Giampieri F., Alvarez-Suarez J.M., Mazzoni L., Forbes-Hernandez T.Y., Gasparrini M., Gonzàlez-Paramàs A.M., Santos-Buelga C., Quiles J.L., Bompadre S., Mezzetti B., Battino M., Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules, 2014b,19, 7798–816.

  • 19.

    Giusti M.M., Wrolstad R., Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14, 217–225.

  • 20.

    Holzwarth M., Korhummel S., Carle R., Kammerer D.R., Impact of enzymatic mash maceration and storage on anthocyanin and color retention of pasteurized strawberry purées. Eur. Food Res. Tech., 2012, 234, 207–222.

  • 21.

    Howard L.R., Brownmiller C., Prior R.L., Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. J. Berry Res., 2014, 4(2), 107–116.

  • 22.

    Igarashi K., Yoshida T., Suzuki E., Antioxidative activity of nasunin in Choujanasu (Little eggplant, Solanum melongena L. ‘Chouja’). Nippon Kogyo Gakkaishi., 1993, 40, 138–143.

  • 23.

    Jing P., Zhao S.J., Ruan S.Y., Xie Z.H., Dong Y., Yu L., Anthocyanin and glucosinolate occurrences in the roots of Chinese red radish (Raphanus sativus L.), and their stability to heat and pH. Food Chem., 2012, 133, 1569–1576.

  • 24.

    Kamiloglu S., Boyacioglu D., Capanoglu E., The effect of food processing on bioavailability of tomato antioxidants. J. Berry Res., 2013, 3(2), 65–77.

  • 25.

    Kapasakalidis P.G., Rastall R.A., Gordon M.H., Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J. Agric. Food Chem., 2006, 54, 4016–4021.

  • 26.

    Kara S., Ercelebi E.A., Thermal degradation kinetics of anthocyanins and visual colour of Urmu mulberry (Morus nigra L.). J. Food Eng., 2013, 116, 541–547.

  • 27.

    Kirca A., Cemeroglu B., Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem., 2003, 81, 583–587.

  • 28.

    Koncic M.Z., Kremer D., Karlovic K., Kosalec I., Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol., 2010, 48, 2176–2180.

  • 29.

    Konczak I., Zhang W., Anthocyanins-more than nature’s colours. J. Biomed. Biotechnol., 2004, 5, 239–240.

  • 30.

    Li J., Li X.D., Zhang Y., Zheng Z.D., Qu Z., Liu M., Zhu S., Liu S., Wang M., Qu L., Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem., 2013, 136, 1429–1434.

  • 31.

    McDougall G.J., Fyffe S., Dobson P., Stewart D., Anthocyanins from red cabbage—Stability to simulated gastrointestinal digestion. Phytochemistry, 2007, 68, 1285–1294.

  • 32.

    Medina M.B., Determination of the total phenolics in juices and superfruits by a novel chemical method. J. Funct. Food, 2011, 3, 79–87.

  • 33.

    Mosier N.S., Ladisch C.M., M.R., Ladisch A., Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng., 2002, 79(6), 610–618.

  • 34.

    Nisha P., Nazar P.A., Jayamurthy P., A comparative study on antioxidant activities of different varieties of Solanum melongena. Food Chem. Toxicol., 2009, 47, 2640–2644.

  • 35.

    Rein M., Copigmentation reactions and color stability of berry anthocyanins. Academic Dissertation, Helsinki: University of Helsinki, 2005, pp. 10–14, [https://helda.helsinki.fi/bitsream/handle/10138/20822/copigmen.pdf].

  • 36.

    Shao-Qian C., Liang L., Si-yi P., Thermal degradation kinetics of anthocyanins and visual color of blood orange juice. Agric. Sci. China, 2011, 10(12), 1992–1997.

  • 37.

    Sharifi A., Hassani B., Extraction methods and stability of color extracted from barberry pigments. Int J Agr Sci., 2012, 2(4), 320–327.

  • 38.

    Silva-Pereira M.C., Teixeira J.A., Pereira-Júniora V.A., Stefani R., Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT – Food Sci. Technol., 2015, 61, 258–262.

  • 39.

    Singh J., Upadhyay A.K., Bahadur A., Singh B., Singh K.P., Rai M., Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hort., 2006, 108, 233–237.

  • 40.

    Todaro A., Cimino F., Rapisarda P., Catalano A.E., Barbagallo R.N., Spagna G., Recovery of anthocyanins from eggplant peel. Food Chem., 2009, 114, 434–439.

  • 41.

    Wang W.D., Xu S.Y., Degradation kinetics of anthocyanins in blackberry juice and concentrate. J. Food Eng., 2007, 82, 271–275.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 16
PDF Downloads 5 5 4