Polyphenol-Protein Complexes and Their Consequences for the Redox Activity, Structure and Function of Honey. A Current View and New Hypothesis – a Review

Open access


There is increasing evidence that protein complexation by honey polyphenols is changing honey structure and function. This relatively less investigated filed of honey research is presented in a context of known mechanism of formation of the stable polyphenol-protein complexes in other foods. At a core of these interactions lies the ability of polyphenols to form non-covalent and covalent bonds with proteins leading to transient and/or irreversible complexes, respectively. Honey storage and thermal processing induces non-enzymatic oxidation of polyphenols to reactive quinones and enables them to form covalent bonds with proteins. In this short review, we present data from our laboratory on previously unrecognized types of protein-polyphenol complexes that differed in size, stoichiometry, and antioxidant capacities, and the implications they have to honey antioxidant and antibacterial activities. Our intent is to provide a current understanding of protein-polyphenol complexation in honey and also some new thoughts /hypotheses that can be useful in directing future research.

1. Arts M.J., Haenen G.R., Voss H.P., Bast A., Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem. Toxicol., 2001, 39, 787-791.

2. Babacan S., Rand A.G., Characterization of honey amylase. J. Food Sci., 2007, 72, 50-55.

3. Baroni M.V., Chiabrando G.A., Costa C., Wunderlin D.A., Assessment of the floral origin of honey by SDS-page immunoblot techniques. J. Agric. Food Chem., 2002, 50, 1362-1367.

4. Baxter N.J., Williamson M.P., Lilley T.H., Haslam E., Stacking interactions between caffeine and methyl gallate. J. Chem. Soc. Faraday Trans., 1996, 92, 231-234.

5. Baxter N.J., Terence H., Lilley T.H., Haslam E., Michael P., Williamson M.P., Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry, 1997, 36, 5566-5577.

6. Bilikova K., Hanes J., Nordhoff E., Saenger W., Klaudiny J., Simuth J., Apisimin, a new serine-valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. FEBS Lett., 2002, 528, 125-129.

7. Bogdanov S., Jurendic T., Sieber R., Gallmann P., Honey for nutrition and health: a review. J. Am. Coll. Nutr., 2008, 27, 677-689.

8. Bogdanov S., Determination of pinocembrin in honey using HPLC. J. Apic. Res., 2011, 28, 55-57.

9. Bonhevi J.S., Torrento M.S., Raich J.M., Invertase activity in fresh and processed honeys. J. Sci. Food Agri., 2000, 80, 507- -512.

10. Bors W., Heller, W., Michel C., Saran M., Flavonoids as antioxidants: determination of radical scavenging efficiencies. Methods Enzymol., 1990, 186, 343-355.

11. Bors W., Michel C, Stettmaier K., Lu Y., Foo L.Y., Antioxidant mechanism of polyphenolic caffeic acid oligomers, constituent of Salvia officinalis. Biol. Res., 2004, 37, 301-311.

12. Boulton R., The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am. J. Enol. Vitic., 2001, 52, 67-77 .

13. Breiteneder H., Thaumatin-like proteins - a new family of pollen and fruit allergens. Allergy, 2004, 479-481.

14. Brudzynski K., Miotto D., The recognition of high molecular weight melanoidins as the main components responsible for radical- scavenging capacity of unheated and heat-treated Canadian honeys. Food Chem., 2011a, 125, 570-575.

15. Brudzynski K., Miotto D., Honey melanoidins. Analysis of a composition of the high molecular weight melanoidin fractions exhibiting radical scavenging capacity. Food Chem., 2011b, 127, 1023-1030.

16. Brudzynski K., Miotto D., The relationship between the content of Maillard-reaction-like products and bioactivity of Canadian honeys. Food Chem., 2011c, 124, 867-874.

17. Brudzynski K., Kim L., Storage-induced chemical changes in active components of honey de-regulate its antibacterial activity. Food Chem., 2011, 126, 1155-1163.

18. Brudzynski K., Sjaarda C., Maldonado-Alvarez L., A new look on protein-polyphenol complexation during honey storage: Is this a random or organized event with the help of dirigent-like proteins? PLoS One, 2013, 8. e72897.

19. Cilliers J.J.L., Singleton V.L., Characterization of the products of nonenzymic autoxidative phenolic reactions in a caffeic acid model system. J. Agric. Food Chem., 1991, 39, 1298-1303.

20. Charlton A.J., Baxter N.J., Lokman Khan M., Moir A.J.G., Haslam E., Davies A.P., Williamson M.P., Polyphenol/peptide binding and precipitation. J. Agric. Food Chem., 2002, 50, 1593- -1601.

21. Cowan M.M., Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12, 564-582.

22. Cushnie T.P., Lamb A.J., Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26, 343-356.

23. De Freitas V., Mateus N., Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem., 2001, 49, 940-945.

24. Di Girolamo F., D’Amato A., Righetti P.G., Assessment of the floral origin of honey via proteomic tools. J. Proteomics, 2012, 75, 3688-3693.

25. Harborne J.B., Williams C.A., Advances in flavonoid research since 1992. Phytochemistry, 2000, 55, 481-504.

26. Haslam E., Polyphenol-protein interactions. (Short Communication). Biochem. J., 1974, 139, 285-288.

27. Haslam E., Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod., 1996, 39, 205-215.

28. Hotta H., Sakamoto H., Nagano S., Osakai T., Tsujino J., Unusually large number of electrons for the oxidation of polyphenolic antioxidants. Biochem. Biophys. Acta, 2001, 1526, 159-167.

29. Huidobro J.F., Santana F.J., Sanchez M.P., Sancho M.T. Muniategui J., Simal-Lozano J., Diastase, invertase and α-glucosidase activities in fresh honey from northwest Spain. J. Apic. Sci., 1995, 34, 39-44.

30. Iglesias M.T., Martin-Alvarez P.J., Polo M.C., Lorenzo C.D., Pueyo E., Protein analysis of honey by fast protein liquid chromatography: Application to differentiate floral and honeydew honeys. J. Agric. Food Chem., 2006, 54, 8322-8327.

31. Israelachvili J.N., Intermolecular and Surface Forces, Second Edition: With Applications to Colloidal and Biological Systems (Colloid Science). 1992, 2nd ed., Academic Press, San Diego, CA, p. 450.

32. Kamakura M., Suenobu N., Fukushima M., Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochem. Biophys. Res. Commun., 2001, 282, 865-874.

33. Kimura Y., Washino N., Yonekura M., N-linked sugar chains of 350-kDa royal jelly glycoprotein. Biosci. Biotechnol. Biochem., 1995, 59, 507-509.

34. Kimura Y., Kajiyama S., Kanaeda J., Izukawa T., Yonekura M., N-linked sugar chain of 55-kDa royal jelly glycoprotein. Biosci. Biotechnol. Biochem., 1996, 60, 2099-2102.

35. López de Lerma N., Peinado J., Moreno J., Peinado R.A., Antioxidant activity, browning and volatile Maillard compounds in Pedro Ximénez sweet wines under accelerated oxidative aging. LWT- Food Sci. Technol., 2010, 43, 1557-1563.

36. Lothrop R.E., Paine H.S., Some properties of honey colloids and the removal of colloids from honey with bentonite. Industr.Engng. Chem., 1931, 23, 328-332.

37. Majtan J., Kovacova E., Bilikova K., Simuth J., The immunostimulatory effect of the recombinant apalbumin 1-major honeybee royal jelly protein - on TNF-α release. Int. Immunopharmacol., 2006, 6, 269-278.

38. Majtan J., Kumar P., Majtan T., Walls A.F., Klaudiny J., Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp. Dermatol., 2009, 19, e73-e79.

39. Methodieva D., Jaiswal A.K., Cenas N., Dickancaite E., Segura- Aguilar J., Quercetin may act as cytotoxic pro-oxidant after its metabolic activation to semiquinone and quinoidal product. Free Rad. Biol. Med., 1999, 26, 107-116.

40. Midoro-Horiuti T., Brooks E.G., Goldblum R.M., Pathogenesis- -related proteins of plants as allergens. Ann. Allergy Asthma Immunol., 2001, 87, 261-271.

41. Michalska A., Amigo-Benavent M., Zielinski H., del Castillo M.D., Effect of baking on the formation of MRPs contributing to the overall antioxidant activity of rye bread. J. Cereal Sci., 2008, 48, 123e132.

42. Morales F.J., Jimenez-Perez S., Peroxyl radical scavenging activity of melanoidins in aqueous systems. Eur. Food Res. Technol., 2004, 218, 515-520.

43. Moreira A.S.P., Nunes F.M., Domingues M., Coimbra M.A., Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food Funct., 2012, 3, 903-915.

44. Naczk M., Towsend M., Zadernowski R., Shahidi F., Protein- -binding potential of phenolics of mangosteen fruit (Garcinia mangostana). Food Chem., 2011, 128, 292-298.

45. Narayana K.R., Reddy S.R., Chaluvadi M.R., Krishna D.R., Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33, 2-16.

46. Oddo L.P., Piazza M.G., Sabatini A.G., Accorti M., Characterization of unifloral honeys. Apidologie, 1995, 26, 453-465.

47. Oddo L.P., Piazza M.G., Pulcini P., Invertase activity in honey. Apidologie, 1999, 30, 57-65.

48. Oszmianski J., Lee C.Y., Inhibition of polyphenol oxidase activity and browning by honey. J Agric. Food Chem., 1990, 38, 1892-1895

49. Paine H.S., Gertler S., Lothrop R.E., The colloidal constituents of honey. Industr. Engng. Chem., 1934, 26, 73-81. 50. Paz M.A., Flückiger R., Boak A., Kagan H.M., Gallop P.M., Specific detection of quinoproteins by redox-cycling staining. J. Biol. Chem., 1991, 266, 689-692.

51. Pontoh J., Low N.H., Purification and characterization of beta- -glucosidase from honey bees (Apis mellifera). Insect Biochem. Mol. Biol., 2002, 32, 679-690.

52. Pyrzynska K., Biesaga M., Analysis of phenolic acids and flavonoids in honey. Trends Anal. Chem., 2009, 28, 893-902

53. Rohn S., Rawel H.M.J., Antioxidant activity of protein-bound quercetin J. Agric. Food Chem., 2004, 52, 4725-4729.

54. Rossano R., Larocca M., Polito T., Perna A.M., Padula M.C., et al., What are the proteolytic enzymes of honey and what they do tell us? A Fingerprint analysis by 2-D zymography of unifloral honeys. PLoS One, 2012, 7, e49164.

55. RiceEvans C.A., Miller J., Paganga G., Antioxidant properties of phenolic compounds. Trends Plant. Sci., 1997, 2, 152-159.

56. Šarić G., Marković K., Vukičevič K., Lež E., Hruškar M., Vahčič N., Changes of antioxidant activity of honey after heat treatment. Czech J. Food Sci., 2013, 31, 601-606.

57. Schepartz A.I., Subers M.H., The glucose-oxidase of honey: I. Purification and some general properties of the enzyme. Biochim. Biophys. Acta, 1964, 85, 228-237.

58. Semkiw P., Skowronek W., Skubida P., Rybak-Chmielewska H., Szczesna T., Changes occurring in honey during ripening under controlled conditions based on α-amylase activity, acidity and 5-hydroxymethylfurfural content. J. Apic. Sci., 2010, 54: 55-64.

59. Siebert K.J., Troukhanova N.V., Lynn P.Y., Nature of polyphenols- protein interactions. J. Agric. Food Chem., 1996, 44, 80-85.

60. Siebert K.J., Effects of protein-polyphenol interactions on beverage haze, stabilization and analysis. J. Agric. Food Chem., 199, 47, 353-362.

61. Šimúth J., Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie, 2001, 32, 69-80.

62. Šimúth J., Bilikova K., Kovacova E., Kuzmova Z., Schroder W., Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-α is a regular component of honey. J. Agric. Food Chem., 2004, 52, 2154-2158.

63. Spencer C.M., Cai Y., Martin R., Gaffney S.H., Goulding P.N., Magnolato D., Lilley T.H., Haslam E., Polyphenol complexation- some thoughts and observations. Phytochemistry, 1988, 27, 2397-2409.

64. Tagliazucchi D., Verzelloni E., Conte A., Contribution of melanoidins to the antioxidant activity of traditional balsamic vinegar during aging. J. Food Biochem., 2010, 34, 1061-1078.

65. Tamura S., Amano S., Kono T., Kondoh J., Yamaguchi K., Kobayashi S., Ayabe T., Moriyama T., Molecular characteristics and physiological functions of major royal jelly protein 1 oligomer. Proteomics, 2009, 9, 5534-5543.

66. Tonks A.J., Cooper R.A., Jones K.P., Blair S., Parton J., Tonks A., Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 2003, 21, 242-247.

67. Turkmen N., Sari F., Poyrazoglu E.S., Velioglu Y.S., Effects of prolonged heating on antioxidant activity and color of honey. Food Chem., 2006, 95, 653-657.

68. Wang H.-Y., Qian H., Yao W.-R., Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem., 2011,128, 573-584.

69. Watanabe K., Shinmoto H., Kobori M., Tsushida T., Shinohara K., Kanaeda J., Yonekura M., Stimulation of cell growth in the U-937 human myeloid cell line by honey royal jelly protein. Cytotechnology, 1998, 26, 23-27.

70. White J. Jr., The composition of honey. Bee World, 1957, 38, 57-66.

71. White J., Kushnir I., Subers M.H., Effect of storage and processing temperatures on honey quality. Food Technol., 1964. 18, 153-156.

72. White J., Kushnir I., The enzymes of honey: Examination by ion- -exchange chromatography, gel filtration and starch-gel electrophoresis. J. Apic. Res., 1966, 6, 69-89.

73. Witczak M., Juszczak L., Gałkowska D., Non-Newtonian behaviour of heather honey. J. Food Eng., 2011, 104, 532-537.

74. Won S.R., Lee D.C., Ko S.H., Kim J.H., Rhee H.I., Honey major protein characterization and its application to adulteration detection. Food Res. Int., 2008, 41, 952-956.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 198 23
PDF Downloads 133 133 23