A Comprehensive Study on Antioxidant Properties of Crude Extracts from Fruits of Berberis vulgaris L., Cornus mas L. and Mahonia aquifolium Nutt.

Open access

Abstract

The antioxidant capacity of methanolic crude extracts of Berberis vulgaris L., Cornus mas L. and Mahonia aquifolium Nutt. was tested with the thiobarbituric acid reactive substances formation assay, the ferric reducing power (FRAP) and 2,2-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging assay. The content of antioxidant components in the extracts, their partition coefficient on 1-octanol:water and affinity to liposome membranes were determined as well. The results show that the IC50 parameter connected with the antioxidant activity on phosphatidylcholine liposome membrane decreased as follows: B. vulgaris (0.14±0.01 mg/mL) > M. aquifolium (0.34±0.03 mg/mL) > C. mas (1.13±0.01 mg/mL) for AAPH-induced oxidation and M. aquifolium (0.29±0.03 mg/mL) > C. mas (1.24±0.07 mg/mL) > B. vulgaris (1.50±0.05 mg/mL) for Fe(II)/ascorbic acid-induced oxidation, and M. aquifolium (2.35±0.10 mg/mL) > B. vulgaris (2.69±0.04 mg/mL) > C. mas (6.17±0.06 mg/mL) for UVC irradiation. All the extracts exhibited the ability to quench DPPH• and to reduce Fe(III) ions to Fe(II) via redox reaction. The content of active components in the extracts, the partition coefficient and extracts affinity to membranes correlated well with their antioxidant activities. This study has shown that fruits of B. vulgaris, M. aquifolium and C. mas, from which the extracts were obtained, are attractive for consumption and can potentially be used in production of new processed fruit.

1. Benzie I.F.F., Strain J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239, 70-76.

2. Brand-Williams B., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity. Lebens.-Wiss. Technol., 1995, 28, 25-30.

3. Buege J.A., Aust S.D., Microsomal lipid peroxidation. Methods Enzymol., 1978, 52c, 302-310.

4. Chen X., Ahn D.U., Antioxidant activities of six natural phenolics against lipid oxidation induced by Fe2+ or ultraviolet light. JAOCS, 1998, 75, 1717-1721.

5. Dorman H.J.D., Peltoketo A., Hiltunen R., Tikkanen M.J., Characterization of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem., 2003a, 83, 255-262.

6. Dorman H.J.D., Kosar M., Kahlos K., Holm Y., Hiltunen R., Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem., 2003b, 51, 4563-4569.

7. Du C. -T., Francis F.J., Anthocyanins from Cornus mas. Phytochemistry, 1973, 12, 2487-2489.

8. Fatehi M., Saleh T.M., Fatehi-Hassanabad Z., Farrokhfal K., Jafarzadeh M., Davodi S., A pharmacological study on Berberys vulgaris fruit extract. J. Ethnopharmacol., 2005, 102, 46-52.

9. Gabrielska J., Korzeniowska M., Wojdyło A., Antioxidative effect of plant extracts and fl avones on liposome and erythrocyte membranes. Pol. J. Food Nutr. Sci., 2007, 57, 145-150.

10. Giusti M.M., Wrolstad R.E., Characterization and measurement of anthocyanins by UV-visible spectroscopy. 2001, in: Current Protocols in Food Analytical Chemistry (eds. R.E. Wrolstad, T.E. Acree, H. An, E.A. Decker, M.H. Penner, D.S. Reid, S.J. Schwartz, C.F. Shoemaker, P. Sporns), 1st ed., John Wiley & Sons, Inc., New York, pp. F1.2.1-F.2.13.

11. Gładkowski W., Chojnacka G., Kiełbowicz G., Psarski B., Trziszka T., Wawrzeńczyk C., Characteristics of phospholipid fractions isolated from the yolks of eggs from Lohman Brown hens and traditional local hen breed “zielonozka kuropatwiana”. Przemysł chem., 2009, 88, 432-435 (in Polish).

12. Gutteridge J.M.C., Free radical in disease processes. Free Rad. Res. Comm., 1993, 19, 141-158.

13. Halliwell B., Gutteridge J.M.C., Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet, 1984, 1, 1396-1398.

14. Jacob R.A., Burri B.J., Oxidative damage and defense. Am. J. Clin. Nutr., 1996, 63, 985S-990S.

15. Ji X., Li Y., Liu H., Yan Y., Li J., Determination of the alkaloid content in different parts of some Mahonia plants by HPLC. Pharm. Acta Helv., 2000, 74, 387-391.

16. Jia Z., Tang M., Wu J., The determination of fl avonoids contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64, 555-559.

17. Karawita R., Siriwardhana N., Lee K., Heo M., Yeo I., Lee Y., Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur. Food Res. Technol., 2005, 220, 363-371.

18. Koncić M.Z., Kremer D., Karlović K., Kosalec I., Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol., 2010, 48, 2176-2180.

19. Kong J.M., Chia L.S., Goh N.K., Chia T.F., Brouillard R., Analysis and biological activities of anthocyanins. Phytochemistry, 2003, 64, 923-933.

20. Kucharska A.Z., Active compounds of cornelian cherry fruit (Cornus mas L.). Monografi a CXL 5111, Wyd. UP we Wrocławiu, 2012, p. 18 (in Polish).

21. Liu R.H., Health benefi ts of fruit and vegetables are from additive and synergistic combination of phytochemicals. Am. J. Clin. Nutr., 2003, 78S, S517-S520.

22. Liu R.H., Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 2004, 134, 3479S-3485S.

23. Marinova D., Ribarova F., Atanassova M., Total phenolics and total fl avonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metallurgy, 2005, 40, 255-260.

24. McCune L., Johns T., Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest. J. Ethnopharmacol., 2002, 82, 197-205.

25. Minaiyan M., Ghannadi A., Mahzouni P., Jaffari-Shirazi E., Comparative study of Berberis vulgaris fruit extract and berberine chloride effects on acetic acid-induced colitis in rats. Iran. J. Pharmaceut. Res., 2011, 10, 97-104.

26. Minotti G., Aust S.D., The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J. Biol. Chem., 1987, 262, 1098-1104.

27. Nenadis N., Zafi ropoulou I., Tsimidou M., Commonly used food antioxidant: a comparative study in dispersed systems. Food Chem., 2003, 82, 403-407.

28. Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis Gr., Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem., 2007, 102, 777-783.

29. Pawlowska A., Camangi F., Braca A., Quali-quantitative analysis of fl avonoids of Cornus mas L. (Cornaceae) fruits. Food Chem., 2010, 119, 1257-1261.

30. Popović B.M., Štajner D., Slavko K., Sandra B., Antioxidant capacity of cornelian cherry (Cornus mas L.) - Comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chem., 2012, 134, 734-741.

31. Račková L., Oblozinsky M., Kostalova D., Kettmann V., Bezakova L., Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. J. Infl amm., 2007, 4, 1-7.

32. Rop O., Mleck J., Kramarova D., Jurikova T., Selected cultivars of cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr. J. Biotechnol., 2010, 9, 1205-1210.

33. Seeram N.P., Schutzki R., Chandra A., Nair M.G., Characterization, quantifi cation, and bioactivities of anthocyanins in Cornus species. J. Agric. Food Chem., 2002, 50, 2519-2523.

34. Shih M., Hu M., Relative roles of metal ions and singlet oxygen in UVA-induced liposomal lipid peroxidation. J. Inorg. Biochem., 1999, 77, 225-230.

35. Tammela P., Laitinen L., Galkin A., Wennberg T., Heczko R., Vuorelam H., Slotte J.P., Vuorela P., Permeability characteristics and membrane affi nity of fl avonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch. Biochem. Biophys., 2004, 425, 193-199.

36. Tural S., Koca I., Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hortic., 2008, 116, 362-366.

37. Turkmen N., Sari F., Velioglu S., Effects of extraction solvents on concentration activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem., 2006, 99, 835-841.

38. Wang J., Sun B., Cao Y., Tian Y., Li X., Optimalization of ultrasound- assisted extraction of phenolic compounds from wheat bran. Food Chem., 2008, 106, 806-810.

39. West B. J., Deng S., Jensen C.J., Palu A.K., Berrio L.F., Antioxidant, toxicity, and iridoid tests of processed Cornelian cherry fruits. Int. J. Food Sci. Technol., 2012, 47, 1392-1397.

40. Vareed S.K., Reddy M.K., Schutzki R.E., Nair M.G., Anthocyanins in Cornus alterifolia, Cornus controversa, Cornus kousa and Cornus fl orida fruits with health benefi ts. Life Sci., 2006, 78, 777-784.

41. Vareed S.K., Schutzki R.E., Nair M.G., Lipid peroxidation, cyclooxygenase enzyme and tumor cell proliferation inhibitory compounds in Cornus kousa fruits. Phytomedicine, 2007, 14, 706-709.

42. Yilmaz K.U., Ercisil S., Zengin Y., Sengul M., Kafkas E.Y., Preliminary characterization of cornelian cherry (Cornus mas L.) genotypes for their physic-chemical properties. Food Chem., 2009, 114, 408-412.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information


IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760



CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 51
PDF Downloads 47 47 37