Peanut Allergenicity and Cross-Reactivity with Pea Proteins in the In Vivo Model

Open access

The aim of the study was to analyse the potential pea-peanut cross-reactivity using the mice BALB/c as a biological in vivo model in the research on immune response to peanut proteins (PnE). BALB/c mice were three-fold sensitised (on days 1, 7, and 21) by oral or intraperitoneal (IP) administration of PnE in 0.5 mg or 1 mg dose, with or without adjuvant - aluminum hydroxide gel (Alum). Serum immunoglobulins (IgE, IgG, IgG1 and IgG2a) and level of cytokines (IL-4, IL-10, IFN- γ), secreted by the isolated lymphocytes were examined. The highest increase in total IgE and peanut-specific IgG1 was noted in the group sensitised by IP administration of PnE in the presence of Alum. Lymphocytes from peanut-sensitised (with and without Alum) mice showed a significantly high level of IL-4 and this cytokine was secreted to a much higher extent as compared to IFN-γ. Stimulation of a culture of lymphocytes with pea proteins resulted in high IFN-γ secretion. A weak reaction of peanut-specific IgG1 present in mice serum with pea globulins (vicilin - PV and legumin - PL) can suggest that the cross-reactivity between peanut and pea proteins results from the presence of proteins other than 7S and 11S globulins. Due to the demonstrated low cross-reactivity between peanut proteins and pea globulins, the possibility of applying pea proteins in peanut-allergy immunotherapy may be suggested.

1. Akdis C.A., Akdis M., Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J. Allergy Clin. Immunol., 2009, 123, 735-746.

2. Aldemir H., Bars R., Herouet-Guicheney C., Murine model for evaluating the allergenicity of novel proteins and foods. Reg. Toxicol. Pharmacol., 2009, 54, S52-S57.

3. Arps V., Sudowe S., Kölsch E., Antigen dose-dependent differences in IgE antibody production are not due to polarization towards Th1 and Th2 cell subsets. Eur. J. Immonol., 1998, 28, 681-686.

4. Baeza M.L., Zubeldia J.M., Immunology of anaphylaxis: lessons from murine models. Curr. Allergy Astma Rep., 2007, 7, 49-55.

5. Barnes P.J., IL-10: a key regulator of allergic disease. Clin. Exp. Allergy, 2001, 31, 667-669.

6. Barre A., Borges J.P., Culerrier R., Rouge P., Homology modelling of the major peanut allergen Ara h 2 and surface mapping of IgE-binding epitopes. Immunol. Lett., 2005a, 100, 153-158.

7. Barre A., Borges J.F., Rougé P., Molecular modelling of the major allergen Ara h1 and other homotrimeric allergens of the cupin superfamily: a structural basis for their IgE-binding cross-reactivity. Biochimie, 2005b, 87, 499-506.

8. Barre A., Sordet C., Culerrier R., Rance F., Didier A., Rouge P., Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol. Immunol., 2008, 45, 1231-1240.

9. Barre A., Jacquet G., Sordet C., Culerrier R., Rougé P., Homology modelling and conformational analysis of IgE-binding epitopes of Ara h 3 and other legumin allergens with a cupin fold from tree nuts. Mol. Immunol., 2007, 44, 3243-3255.

10. Beardslee T.A., Zeece M.G., Sarath G., Markwell J.P., Soybean glycinin G1 acidic chain shares IgE epitopes with peanut allergen Ara h 3. Int. Arch. Allergy Immonol., 2000, 123, 299-307.

11. Bielikowicz K, Wojtacha P., Kostyra E., Iwan M., Jarmołowska B., Kostyra H., Influence of glycation of wheat albumins and globulins on their immunoreactivity and physicochemical properties. Pol. J. Food Nutr. Sci., 2010, 60, 335-340.

12. Blumchen K., Ulbricht H., Staden U., Dobberstein K., Beschorner J., de Oliveira L.C., Shreffler W.G., Sampson H.A., Niggemann B., Wahn U., Beyer K., Oral peanut immunotherapy in children with peanut anaphylaxis. J. Allergy Clin. Immunol., 2010, 126, 83-91.

13. Bowman Ch.C., Selgrade M.K., Differences in allergenic potential of food extracts following oral exposure in mice reflect differ- ences in digestibility: potential approaches to safety assessment. Toxicol. Sci., 2008, 102, 100-109.

14. Burks A.W., Peanut allergy. Lancet, 2008, 371, 1538-1546.

15. Burks A.W., Sampson H.A., Bannon G.A., Peanut allergens. Allergy, 1998, 53, 725-730.

16. De Leon M.P., Drew A.C., Glaspole I.N., Suphioglu C., O’Hehir R.E., Rolland J.M., IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Mol. Immunol., 2007, 44, 463-471.

17. Dearman R.J., Kimber I., A mouse model for food allergy using intraperitoneal sensitization. Methods, 2007, 41, 91-98.

18. Delayre-Orthez C., de Blay F., Frossard N., Pons F., Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin. Exp. Allergy, 2004, 34, 1789-1795.

19. Eisenbarth S.C., Piggott D.A., Huleatt J.W., Visintin I., Herrick C.A., Bottomly K., Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med., 2002, 196, 1645-1651.

20. Fæste C.K., Namork E., Differentiated patterns of legume sensitisation in peanut-allergic patients. Food Anal. Methods, 2010, 3, SI, 357-362.

21. FAO/WHO 2001. Evaluation of allergenicity of genetically modified foods. Report of a joint FAO/WHO expert consultation on allergenicity of foods derived from biotechnology. Rome: Food and Agriculture Organization of the United Nations.

22. Finkelman F.D., Peanut allergy and anaphylaxis. Curr. Opin. Immunol., 2010, 22, 783-788.

23. Fiorentino D.F., Bond M.W., Mosmann T.R., Two types of mouse T-helper cell. IV.Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med., 1989, 170, 2081-2095.

24. Freitas R.L., Ferreira R.B., Teixeira A.R., Use of a single method in the extraction of the seed storage globulins from several legume species. Application to analyse structural comparisons within the major classes of globulins. Int. J. Food Sci. Nutr., 2000, 51, 341-352.

25. Ganeshan K., Neilsen C.V., Hadsaitong A., Schleimer R.P., Luo X., Bryce P.J., Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J. Allergy Clin. Immunol., 2009, 123, 231-238.

26. Gizzarelli F., Corinti S., Barletta B., Iacovacci P., Brunetto B., Butteroni C., Afferni C., Onori R., Miraglia M., Panzini G., Di Felice G., Tinghino R., Evaluation of allergenicity of genetically modified soybean protein extract in a murine model of oral allergen- specific sensitization. Clin. Exp. Allergy, 2006, 36, 238-248.

27. Goodman R.E., Vieths S., Sampson H.A., Hill D., Ebisawa M., Taylor S.L., van Ree R., Allergenicity assessment of genetically modified crops - what makes sense? Nat. Biotech., 2008, 26, 73-81.

28. Helm R.M., Food allergy animal models - an overview. Ann. N. Y. Acad. Sci., 2002, 964, 139-150.

29. Hilton J., Dearman R.J., Sattar N., Basketter D.A., Kimber I., Characteristics of antibody responses induced in mice by protein allergens. Food Chem. Toxicol., 1997, 35,1209-1218.

30. Hsu D.H., Moore K.W., Spits H., Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine- activated killer activity. Int. Immunol., 1992, 4, 563-569.

31. Ibaňez D., Martinez M., Sanchez J.J., Fernández-Caldas E., Legume: cross-reactivity. Allergol. Immunopathol., 2003, 31, 151-161.

32. Jones S.M., Pons L., Roberts J.L., Scurlock A.M., Perry T.T., Kulis M., Shreffler W.G., Steele P., Henry K.A., Adair M., Francis J.M., Durham S., Vickery B.P., Zhong X., Burks A.W., Clinical efficacy and immune regulation with peanut oral immunotherapy. J. Allergy Clin. Immunol., 2009, 124, 292-300.

33. Kaplan A.P., Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol., 2001, 124, 423-431.

34. Khodoun M., Strait R., Orekov T., Hogan S., Karasuyama H., Herbert D.R., Kohl J., Finkelman F.D., Peanuts can contribute to anaphylactic shock by activating complement. J. Allergy Clin. Immunol., 2009, 123, 342-351.

35. Knippels L.M., van Wijk J., Penninks A.H., Food allergy: what do we learn from animal models? Curr. Opin. Allergy Clin. Immunol., 2004, 4, 205-209.

36. Kopper R.A., Odum N.J., Sen M., Helm R.M., Stanley J.S., Burks A.W., Peanut protein allergens: the effect of roasting on solubility and allergenicity. Int. Arch. Allergy Immunol., 2005, 136, 16-22.

37. Ladics G.S., Knippels L.M.J., Penninks A.H., Bannon G.A., Goodman R.E., Herouet-Guicheney C., Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Reg. Toxicol. Pharmacol., 2010, 56, 212-224.

38. Lee S.Y., Huang C.K., Zhang T.F., Schofield B.H., Burks A.W., Bannon G.A., Sampson H.A., Oral administration of IL-12 suppresses anaphylactic reactions in a murine model of peanut hypersensitivity. Clin. Immunol., 2001, 101, 220-228.

39. Lehrer S.B., McClain S., Utility of animal models for predicting human allergenicity. Reg. Toxicol. Pharmacol., 2009, 54, S46- S51.

40. Li X.M., Serebrisky D., Lee S.Y., Huang C.K., Bardina L., Schofield B.H., Stanley J.S., Burks A.W., Bannon G.A., Sampson H.A., A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J. Allergy Clin. Immunol., 2000, 106, 150-158.

41. Lifrani A., Dubarry M., Rautureau M., Aattouri N., Boyaka P.N., Tome D., Peanut-lupine antibody cross-reactivity is not associated to cross-allergenicity in peanut-sensitized mouse strains. Inter. Immunopharmacol., 2005, 5, 1427-1435.

42. Maddaloni M., Staats H.F., Mierzejewska D., Hoyt M., Robinson A., Callis G., Kozaki S., Kiyono H., McGhee J.R., Fujihashi K., Pascual D.W., Mucosal vaccine targeting improves onset of mucosal and systemic immunity to botulinum neurotoxin A. J. Immunol., 2006, 177, 5524-5532.

43. Male D., Brostoff J., Roth D.B., Roitt I., Immunologia. 2008, Elsevier Urban & Partner, Wrocław, Poland, pp. 217-226 (in Polish).

44. Maleki S.J., Kopper R.A., Shin D.S., Park C.W., Compadare C.M., Sampson H., Burks W., Bannon G.A., Structure of the major peanut allergen Ara h 1 may protect IgE-binding epitopes from degradation. J. Immunol., 2000, 164, 5844-5849.

45. Maloney J.M., Rudengren M., Ahlstedt S., Bock S.A., Sampson H.A., The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy. J. Allergy Clin. Immunol., 2008, 122, 145-151.

46. Marinaro M., Staats H.F., Hiroi T., Jackson R.J., Coste M., Boyaka P.N., Okahashi N., Yamamoto M., Kiyono H., Bluethmann H., Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J. Immunol., 1995, 155, 4621-4629.

47. Martínez San Ireneo M., Ibáñez M.D., Sánchez J.J., Carnés J., Fernández-Caldas E., Clinical features of legume allergy in children from a Mediterranean area. Ann. Allergy Asthma Immunol., 2008, 101, 179-84.

48. McClain S., Bannon G.A., Animal models of food allergy: opportunities and barriers. Curr. Allergy Asthma Rep., 2006, 6, 141-144.

49. Minkiewicz P., Dziuba J., Gładkowska I., Update of the list of allergenic proteins from milk, based on local amino acid sequence identity with known epitopes from bovine milk proteins - a short report. Pol. J. Food Nutr. Sci., 2011, 61, 153-158.

50. Miyajima I., Dombrowicz D., Martin T.R., Ravetch J.V., Kinet J.P., Galli S.J., Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc-gamma-RIII: assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J. Clin. Invest., 1997, 99, 901-914.

51. Morafo V., Srivastava K., Huang C.K., Kleiner G., Lee S.Y., Sampson H., Li X., Genetic susceptibility of food allergy is linked to differential TH2-TH1 responses in C3H/HeJ and BALB/c mice. J. Allergy Clin. Immunol., 2003, 111, 1122-1128.

52. Pons L., Ponnappan U., Hall R.A., Simpson P., Cockrell G., West M., Sampson H.A., Helm R.M., Burks A.W., Soy immunotherapy for peanut-allergic mice: Modulation of the peanut-allergic response. J. Allergy Clin. Immunol., 2004, 114, 915-921.

53. Pramod S.N., Venkatesh Y.P., Mahesh P.A., Potato lectin activates basophils and mast cells of atopic subjects by its interaction with core chitobiose of cell-bound non-specific immunoglobulin E. Clin. Exp. Immunol., 2007, 148, 391-401.

54. Romagnani S., The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol., 2000, 105, 399-408.

55. Shutov A.D., Kakhovskaya I.A., Braun H., Baumlein H., Muntz K., Legumin-like and vicilin-like seed storage proteins: evidence for a common single-domain ancestral gene. J. Mol. Evol., 1995, 41, 1057-1069.

56. Sicherer S.H., Muñoz-Furlong A., Burks A.W., Sampson H.A., Prevalence of peanut and tree nut allergy in the United States determined by means of random digit dial telephone survey: a 5-year follow-up study. J. Allergy Clin. Immunol., 2003, 112, 1203-1207.

57. Sicherer S.H., Sampson H.A., Food allergy. J. Allergy Clin. Immunol., 2010, 125, S116-S125.

58. Strid J., Thomson M., Hourihane J., Kimber I., Strobel S., A novel model of sensitization and oral tolerance to peanut protein. Immunology, 2004, 113, 293-303.

59. Strobel S., Oral tolerance, systemic immunoregulation and autoimmunity. Ann. N. Y. Acad. Sci., 2002, 958, 47-58.

60. Sumiyoshi M., Sakanaka M., Kimura Y., Effects of Red Ginseng extract on allergic reactions to food in Balb/c mice. J. Ethnopharm., 2010, 132, 206-212.

61. Thyagarajan A., Varshney P., Jones S.M., Sicherer S., Wood R., Vickery B.P., Sampson H., Burks A.W., Peanut oral immunotherapy is not ready for clinical use. J. Allergy Clin. Immunol., 2010, 126, 31-32.

62. Van Wijk F., Knippels L., Initiating mechanisms of food allergy: Oral tolerance versus allergic sensitization. Biomed. Pharmacother., 2007, 61, 8-20.

63. Van Wijk F., Nierkens S., Hassing I., Feijen M., Koppelman S.J., de Jong G.A.H., Pieters R., Knippels L.M.J., The effect of the food matrix on in vivo immune responses to purified peanut allergens. Toxicol. Sci., 2005, 86, 333-341.

64. Yang M., Mine Y., Novel T-cell epitopes of ovalbumin in BALB/c mouse: potential for peptide-immunotherapy. Biochem. Biophys. Res. Commun., 2009, 378, 203-208.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information


IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760



CiteScore 2018: 1.92

SCImago Journal Rank (SJR) 2018: 0.621
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 129 10
PDF Downloads 64 47 10