Bioactive Phenolic Compounds of Soybean (Glycine max cv. Merit): Modifications by Different Microbiological Fermentations

Open access

In this work, the effect of solid-substrate fermentation with Aspergillus oryzae, Rhizopus oryzae and Bacillus subtilis of soybean seeds on bioactive phenolic compounds was studied. Among the analysed sample extracts several phenolic compounds, hydroxybenzoics, hydroxycinnamics and fl avonoids, such as fl avonols, fl avanones, isofl avones were identifi ed by HPLC-DAD-ESI/MS. The results obtained indicate that fermentation process carried out in seeds inoculated with different microorganisms produced signifi cant changes in fl avonoids and phenolic acids contents. A signifi cant increase in the content of phenolic acids was observed in the samples fermented with the different microorganisms with respect to soybean without fermentation and fermented naturally. Fermentation process produced also important changes in fl avonoids compounds, with a signifi cant formation in isofl avone aglycone contents such as daidzein, glycitein and genistein as a consequence of glucosidase activity of microorganism in this process, showing signifi cant differences (p<0.05) with respect to control. Therefore, this process was shown to be a good way to increase the phenolic content of soybean, which could confer health-promoting effects.

1. Akpapunam M.A., Achinewhu S.C., Effects of cooking, germination and fermentation on the chemical composition of Nigerian cowpea (Vigna unguiculata). Qual. Plant. Plant Foods Hum. Nutr., 1985, 35, 353-358.

2. Alonso R., Aguirre A., Marzo F., Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem., 2000, 68, 159-165.

3. Chang C.T., Hsu C.K., Chou S.T., Chen Y.C., Huang F.S., Chung Y.C., Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus. Int. J. Food Sci. Tech., 2009, 44, 799-806.

4. Cho K.M., Hong S.Y., Math R.K., Lee J.H., Kambiranda D.M., Kim J.M., Islam S.A., Yun M.G., Cho J.J., Lim W.L., Yun H.D., Biotransformation of phenolics (isofl avones, fl avanols and phenolic acids) during the fermentation of cheonggukjang by Bacilluspumilus HY1. Food Chem., 2009, 114, 413-419.

5. Choi Y.M., Kim Y.S., Ra K.S., Suh H.J., Characteristics of fermentation and bioavailability of isofl avones in Korean soybean paste (doenjang) with application of Bacillus sp. KH-15. Int. J. Food Sci. Tech., 2007, 42, 1497-1503.

6. Doblado R., Frías J., Muñoz R., Vidal-Valverde C., Fermentation of Vigna sinensis var. carilla fl ours by natural microfl ora and Lactobacillus species. J. Food Protect., 2003, 66, 2313-2320.

7. Dueñas M., Fernández D., Hernández T., Estrella I., Muñoz R., Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifi cations by fermentation with natural microfl ora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 2005, 85, 297-304.

8. Dueñas M., Hernández T., Estrella I., Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem., 2007a, 101, 90-97.

9. Dueñas M., Hernández T., Estrella I., Infl uence of the action of exogenous enzymes on the polyphenolic composition of pea. Effect on the antioxidant activity. Eur. Food Res. Technol., 2007b, 225, 493-500.

10. Dueñas M., Hernández T., Estrella I., Fernández D., Germination as a process to increase the polyphenols content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem., 2009, 117, 599-607.

11. Fernández-Orozco R., Frías J., Muñoz R., Zielinski H., Piskula M.K., Kozlowska H., Vidal-Valverde C., Fermentation as a bioprocess to obtain functional soybean fl ours. J. Agric. Food Chem., 2007, 55, 8972-8979.

12. Frías J., Vidal-Valverde C., Kozlowska H., Tabera J., Honke J., Hedley C.L., Natural fermentation of lentils. Infl uence of time, fl our concentration and temperature on the kinetics of monosaccharides, disaccharides and α-galatosides. J. Agric. Food Chem., 1996, 44, 579-584.

13. Granito M., Torres A., Frías J., Guerra M., Vidal-Valverde C., Infl uence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol., 2005, 220, 176-181.

14. Hendrich S., Murphy P.A., Isofl avones: source and metabolism. 2001, in: Handbook of Nutraceuticals and Functional Foods (ed. R.E.C. Wildman). Boca Raton FL, CRC Press, USA, pp. 55-75.

15. Kim E.H., Kim S.H., Chung J.I., Chi H.Y., Kim J.A., Chung I.M., Analysis of phenolic compounds and isofl avones in soybean seeds [Glycine max (L) Merill] and sprouts grown under different conditions. Eur. Food Res. Technol., 2006a, 222, 201-208.

16. Kim E.H., Kim S.H., Chung J.I., Chi H.Y., Kim J.A., Chung I.M., A correlation between the level of phenolic compounds and the antioxidant capacity in cooked-with-rice and vegetables soybean (Glycine max L.) varieties. Eur. Food Res. Technol., 2006b, 224, 259-270.

17. Lee S.J., Kim J.J., Moon H.I., Ahn J.K., Chun S.Ch., Jung W.S., Lee O.K., Chung I.M., Analysis of isofl avones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. J. Agric. Food Chem., 2008, 56, 2751-2758.

18. Lee J.H., Jeon J.Y., Kim S.G., Kim S.H., Chun T., Imm J.Y., Comparative analyses of total phenols, fl avonoids, saponins and antioxidant activity in yellow soy beans and mung beans. Int. J. Food Sci. Tech., 2011, 46, 2513-2519.

19. Lin C.-H., Wei Y.-T., Chou C.-C., Enhanced antioxidant activity of soyben koji prepared with various fi lamentous fungi. Food Microbiol., 2006, 23, 628-633.

20. López-Amorós M.L., Hernández T., Estrella I., Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal., 2006, 19, 277-283.

21. Malencic D., Maksimovic Z., Popovic M., Niladinovic J., Polyphenol content and antioxidant activity of soybean seed extracts. Biores. Technol., 2008, 99, 6688-6691.

22. Nagata C., Takatsuka N., Inaba S., Kawakawi N., Shimizu H., Effect of soymilk consumption on serum estrogen concentrations in premenopausal Japanese women. J. Natl. Cancer Inst., 1998, 90, 1830-1835.

23. Otieno D.O., Shah N.P., Endogenous β-glucosidase and β-galactosidase activities from selected probiotic microorganisms and their role in isofl avone biotransformation in soymilk. J. Appl. Microbiol., 2007a, 103, 910-917.

24. Otieno D.O., Shah N.P., A comparison of changes in the transformation of isofl avones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous β-glucosidases. J. Appl. Microbiol., 2007b, 103, 601-612.

25. Pham T.T., Shah N.P., Hydrolysis of isofl avone glycosides in soy milk by β-galactosidase and β-glucosidase. J. Food Biochem., 2009, 33, 38-60.

26. Park Y.H., Alenscar S.M., Aguiar C.L., Mascrenhas H.A.A., Scamparini A.R.P., Conversion of malonyl β-glucoside isofl avones found in some cultivars of Brazilian soybeans. Ciênc. Tecnol. Aliment., 2002, 22, 130-135.

27. Park Y.K., Lui M.C.Y., Aguiar C.L., Production of enriched isofl avone aglycones during processing of soy protein isolates and soy protein concentrates. 2003, in: IFT Annual Meeting Book of Abstracts. Chicago II. Institute of Food Technologists, pp. 215-221.

28. Randhir R., Vattem D. Shetty K., Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innov. Food Sci. Emerg. Technol., 2004, 5, 235-244.

29. Ribeiro M.L.L., Mandarino J.M.G., Carrao-Panizzi M.C., De Oliveira M.C.N., Campo C.B.H., Nepomuceno A.L., Ida E.I., Isofl avone content and β-glucosidase activity in soybean cultivars of different maturity groups. J. Food Comp. Anal., 2007, 20, 19-24.

30. Rostagno M.A., Palma M., Barroso C.G., Pressurized liquid of isofl avones from soybeans. Anal. Chim. Acta, 2004. 522, 169-177.

31. Setchell K.D.R., Cassidy A., Dietary isofl avones: biological effects and relevance to human health. J Nutr., 1999, 129 (suppl) 758S-767S.

32. Setchell K.D.R., Brown N.M., Zimmer-Nechemias L., Brashear W.T., Wolfe B.E., Kirschner A.S., Heubi J.E., Evidence for lack of absorption of soy isofl avone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr., 2002, 76, 447-453.

33. Setchell K.D.R., Brown N.M., Desai P.B., Ziummer-Nechimias L., Wolfe B., Jakate A.S., Creutizinger V., Heubi J.E., Bioavailability, disposition, and dose-response effects of soy isofl avones when consumed by healthy women at physiologically typical dietary intakes. J Nutr., 2003, 133, 1027-1035.

34. Shahidi F., Naczk M., Phenolic compounds of major oilseeds and plant oils. 2004, in: Phenolics in Food and Nutraceuticals. CRC Press, Boca Raton, Florida, USA, pp. 83-103.

35. Tsangalis D., Ashton J.F., Mcgill A.E.J., Shah N.P., Enzymatic transformation of isofl avone phytoestrogens in soymilk by β-glucosidase producing bifi dobacteria. J. Food Sci., 2002, 67, 3104-3113.

36. Wardhani D.H., Vázquez J.A., Pandiella S.S., Mathematical modelling of the development of antioxidant activity in soybeans fermented with Aspergillus oryzae and Aspergillus awamori in the solid state. J. Agric. Food Chem., 2009, 57, 540-544.

37. Wu Q., Wang M., Sciarappa W.J., Simon J.E., LC/UV/ESI-MS analysis of isofl avones in Edamame and Tofu soybeans. J. Agric. Food Chem., 2004, 52, 2763-2769.

38. Xu B., Chang S.K.C., Characterization of phenolic substances and antioxidant properties of food soybeans grown in the North Dakota-Minnesota region. J. Agric. Food Chem., 2008, 56, 9102-9113.

39. Yue X., Abdallah A.M., Xu Z., Distribution of isofl avones and antioxidant activities of soybean cotyledon, coat and germ. J. Food Process. Pres., 2010, 34, 795-806.

40. Zamora A.F., Fields M.L., Nutritive quality of fermented cowpeas (Vigna sinensis) and chickpeas (Cicer arietinum). J. Food Sci., 1979, 44, 234-236.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 294 28
PDF Downloads 106 106 12